首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
A gas-liquid chromatographic (GLC) procedure is reported for the quantitation of the trimethylsilyl (TMS) derivatives of substituted 2-hydroxy-2H-1,4-benzoxazin-3(4H)-ones (2-hydroxy-2H-1,4-benzoxazin-3(4H)-one[HBOA]; 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one[HMBOA];2,4- dihydroxy-2H-1,4-benzoxazin-3(4H)-one[DIBOA]; 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one[DIMBOA]; and 2,4-dihydroxy-7,8-dimethoxy-2H-1,4-benzoxazin-3(4H)-one[DIM 2BOA]) found in maize (Zea mays L.) extracts. Derivatized samples were chromatographed on columns with liquid phases of 2% DC-11 and 3% OV-17 and detected by flame ionization. Internal standards were methyl palmitate and methyl stearate on DC-11 and methyl behenate on OV-17. Detector response was linear to at least 5 nanomoles for TMS2-HBOA and TMS2-DIBOA and to 19 nanomoles for TMS2-DIMBOA. Standard errors of 2% or less were obtained when four replicate samples were analyzed. For each of the 15 maize lines examined, the amount of DIMBOA determined by GLC was directly proportional to the amount of ferric chloride-reactive material determined colorimetrically.  相似文献   

2.
Bailey BA  Larson RL 《Plant physiology》1989,90(3):1071-1076
Hydroxamic acids occur in several forms in maize (Zea mays L.) with 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) being the predominant form and others including 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) being found at lower concentrations. Two enzymes capable of glucosylating hydroxamic acids were identified in maize protein extracts and partially purified and characterized. The total enzyme activity per seedling increased during the first 4 days of germination and was concurrent with the accumulation of DIMBOA. Purification of the enzymes by ammonium sulfate precipitation followed by Sephadex G-200 and Q-Sepharose gel chromatography resulted in a 13-fold increase in specific activity. The enzymes are initially separated into two peaks (peak 1 and peak 2) of activity by Q-Sepharose gel chromatography. The peak 1 glucosyltransferase had 3.6% of the DIMBOA glucosylating activity when DIBOA was used as substrate, whereas this percentage increased to 57% for the peak 2 enzyme. The enzyme in peak 2 has a Km of 174 micromolar for DIMBOA and a Km of 638 micromolar for DIBOA; the enzyme in peak 1 has a Km of 217 micromolar for DIMBOA and its activity on DIBOA was too low to determine a Km. The identification of two glucosyltransferases capable of glucosylating hydroxamic acids in vitro serves as an initial step in the characterization of the enzymes involved in production of hydroxamic acids in maize.  相似文献   

3.
Role of hydroxamic acids in the resistance of cereals to aphids   总被引:1,自引:0,他引:1  
Hydroxamic acid concentration in Gramineae, both natural and incorporated, correlates with resistance to the aphid Metopolophium dirhodum. 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, a hydroxamic acid isolated from corn extracts, is deleterious to aphids fed on artificial diets. It is proposed that hydroxamic acids act as naturally-occurring protective factors against M. dirhodum.  相似文献   

4.
Hydroxamic acid content was analyzed in the root tissue of four maize, Zea mays L., lines using high-performance liquid chromatography (HPLC) and related to western corn rootworm, Diabrotica virgifera virgifera LeConte, larval development and survivorship. Maize lines evaluated included Mp710 (PI 596627), MpSWCB-4, (PI 550498), Sc213 (PI 548792), and Dk580 (DeKalb commercial hybrid). Maize plants from each line were grown in test tubes containing a transparent agarose gel medium in a growth chamber. After 8 d of growth, root tissue of each line was harvested and hydroxamic acid content analyzed using HPLC. Three hydroxamic acids, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 6-methoxybenzoxazolinone (MBOA), and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), were identified in the maize roots tested. DIMBOA concentration was quantified and ranged from 246.37 +/- 70.53 micrograms to 91.84 +/- 49.82 micrograms DIMBOA per gram of root tissue. No significant difference was found among lines in D. v. virgifera larval development and survivorship.  相似文献   

5.
We report the variation of all 1,4-benzoxazin-3-one derivatives content detectable in maize with plant age in roots and aerial parts. Our results show that the concentration of hydroxamic acids, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc) and its 8-methoxylated analogue (DIM2BOA-Glc) is high after seed germination and then decreases with plant age. Nevertheless, these compounds continue to be biosynthesised during 6-10 days after germination. Variation in concentration of N-O-methylated DIMBOA-Glc (HDMBOA-Glc) is similar to the one of hydroxamic acids in aerial parts. On the contrary, in roots, its concentration remains relatively stable with plant age. After 10 days, HDMBOA-Glc becomes the main compound in roots. This compound is also present in higher concentration than hydroxamic acids in the oldest leaf of 20-day-old maize. The presence of four other DIMBOA related compounds in maize plants depends on variety, age and tissue. The role of these compounds in plant resistance to aphids is discussed.  相似文献   

6.
Two hydroxamic acids isolated from maize extracts, 2,4-dihydroxy-7-methoxy-1,4-(2H)-benzoxazin-3(4H)-one (DIMBOA) and the 2-O-beta-d-glucopyranoside of DIMBOA, inhibit photophosphorylation by spinach chloroplasts. Both cyclic and noncyclic photophosphorylations were inhibited to the same extent. The concentrations producing 50% inhibition for DIMBOA and its glucoside were about 1 and 4 millimolar, respectively. These compounds inhibit coupled electron transport but do not affect basal or uncoupled electron transport. Both acids inhibit the ATPase activities of membrane-bound coupling factor 1 (CF(1)) and of purified CF(1). On the basis of these results, it is concluded that DIMBOA and its glucoside act as energy transfer inhibitors of photophosphorylation.  相似文献   

7.
An insect inhibitor isolated from maize extracts, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), reacted with cysteine, mercaptoethanol, ethane  相似文献   

8.
Liquid phase extraction (LPE) and vapor phase extraction (VPE) methodologies were used to evaluate the impact of the plant activator, cis-jasmone, on the secondary metabolism of wheat, Triticum aestivum, var. Solstice. LPE allowed the measurement of benzoxazinoids, i.e. 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA), and phenolic acids such as trans-p-coumaric acid, syringic acid, p-hydroxybenzoic acid, vanillic acid and cis- and trans-ferulic acid. Using LPE, a significantly higher level of DIMBOA was found in aerial parts and roots of T. aestivum following treatment with cis-jasmone, when compared with untreated plants. Similar results were obtained for phenolic acids, such as trans-ferulic acid and vanillic acid in roots. Using VPE, it was possible to measure levels of 2-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (HBOA), benzoxazolin-2(3H)-one (BOA), ferulic acid, syringic acid and coumaric acid. The levels of HBOA in aerial parts and roots were significantly greater in cis-jasmone treated plants compared to untreated plants. cis-Jasmone is known to be a plant activator in terms of production of defence-related volatile semiochemicals that repel aphids and increase the foraging activity of aphid parasitoids. These results show, for the first time, that cis-jasmone also induces selective production of secondary metabolites that are capable of directly reducing development of pests, diseases and weeds.  相似文献   

9.
Contents of the hydroxamic acids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in leaves and roots of 14 cultivars of rye, Secale cereale L., were determined. Dynamics of accumulation in three cultivars were evaluated. DIBOA was the main cyclic hydroxamic acid in leaves but the contents differed significantly between the cultivars. Both DIBOA and DIMBOA were present in the roots. Maximum concentration of DIBOA in leaves and DIMBOA in roots was reached between 48-54 h and 54-72 h after germination, respectively. Antifeedant activity of DIBOA towards the aphid Rhopalosiphum padi and the feeding behavior were studied by electronic recording in barley leaves treated with different contents of DIBOA. The deleterious activity of DIBOA could arise by starvation and/or a toxic effect. Additionally, allelopathic potential of pure DIBOA and aqueous extracts of leaves and roots of rye (Tetra-Baer) on the germination of lettuce (Lactuca sativa) and rye (Tetra-Baer) seeds was evaluated. A high percentage of germination inhibition of pure DIBOA and the extracts of leaves and roots was observed. The activity is in agreement with the contents of hydroxamic acids in the plants. The substrates had no allelopathic effect on rye seeds.  相似文献   

10.
Hydroxamates (HX) are major secondary metabolites synthesized by rye and are responsible for some of the unique properties of this cereal, including good tolerance of biotic and abiotic stresses and allelopathy. Recently, five genes encoding enzymes taking part in HX biosynthesis have been sequenced and characterized, which was the starting point to undertake the present study. Association analysis of the content of six HX–HBOA (2-hydroxy-1,4-benzoxazin-3-one), GDIBOA (2,4-dihydroxy-1,4-benzoxazin-3(4H)-one glucoside), DIBOA (2,4-dihydroxy-1,4-benzoxazin-3(4H)-one), GDIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3(4H)-one glucoside), DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3(4H)-one) and MBOA (6-methoxy-benzoxazolin-2(3H)-one) in the above-ground parts of plants and roots was performed on a population consisting of 102 and 121 diverse inbred lines, in 2013 and 2014, respectively. Altogether, 48 single nucleotide polymorphisms (SNPs) were found to be associated with the content of at least one HX: 20 SNPs were associated with HX synthesized in the above-ground parts of rye plants (AG-SNP), and 28 were associated with HX synthesized in the roots (R-SNP). The highest number of SNPs was present in genes ScBx1 (9) and ScBx5 (11). The majority of SNPs were affected by environmental factors, except for two: ScBx4_1702 associated with GDIBOA and MBOA contents, and ScBx5_1105 associated with HBOA content in roots.  相似文献   

11.
-DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), a hydroxamic acid from the Gramineae involved in the resistance of cereals to aphids, inhibits  相似文献   

12.
The thermodynamics of formation for DIMBOA-Cu(II) complexes (where DIMBOA = 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-4H-one, a hydroxamic acid from maize) has been investigated in aqueous solutions by a potentiometric method. DIMBOA forms 1:1 and 1:2 chelates with Cu(II) at ionic strength 0.05 M (NaCl04). The stability constants measured were about 105 and 104 for the 1:1 and 1:2 complexes respectively, determined at 10, 20 and 30°. The contribution of ΔH and ΔS to the stability of complexes is examined and the pK values are compared with other ligands found in maize. Although DIMBOA has similar or higher constants to form copper complexes than other plant ligands, its possible role as a transport agent in maize remains to be established.  相似文献   

13.
Cyclic hydroxamic acids present in some species of Gramineae have been reported to be important in resistance of these plants to fungi and insects. Since the nonglucosylated forms of these acids are unstable in aqueous solution, in vitro methods for the measurement of their antibiotic properties have been difficult. Kinetics of the decomposition of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), the major hydroxamate in corn (Zea mays L.) extracts, were studied in buffered aqueous solutions from pH 5 to 7.5 at temperatures from 20 to 80 C. Kinetics were apparently first order under all conditions tested; energies of activation (24 to 28 kcal/mol) were nearly pH-independent. DIMBOA decomposed rapidly (half-life = 5.3 hours at 28 C, pH 6.75) relative to the time required for many procedures which have been used to demonstrate the biological activity of DIMBOA. The rate of disappearance of inhibitory activity of DIMBOA toward Erwinia carotovora was indistinguishable from the rate of decomposition of DIMBOA. Contrary to reports, yields of 6-methoxy-2-benzoxazolinone (MBOA) were not quantitative. Gas-liquid chromatography analytical procedures were developed for quantitation of trimethylsilyl and acetyl derivatives of MBOA. As measured by ultraviolet spectroscopy and/or gas-liquid chromatography, conversion of DIMBOA to MBOA ranged from 40 to 75% of theoretical in aqueous buffers, bacterial growth medium, and ethyl acetate extracts of corn tissue resuspended in buffer. Yields varied with temperature, pH, and constituents in the medium.  相似文献   

14.
Cyclic hydroxamic acids, 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its 7-methoxy analogue (DIMBOA), occur transiently in high amounts in wheat and maize during the juvenile, non-autotrophic stage of growth. To elucidate the biosynthetic enzymes operating for the transient production of these compounds, we examined the hydroxylating activities for 2-hydroxy-1,4-benzoxazin-3-one (HBOA), the immediate precursor of DIBOA, and indole, the first intermediate of the biosynthetic pathway that branches off from the tryptophan pathway, by using microsomes prepared from wheat seedlings. Both hydroxylases occurred soon after germination, reached a maximum 48 h after germination, and decreased to finally disappear as the plants grew into the autotrophic growth stage. The mode of appearance and disappearance similar to that of hydroxamic acids, suggesting that elevated expression of the whole set of enzymes involved in the biosynthesis after indole was responsible for the transient occurrence of hydroxamic acids. The hydroxylating activity was also observed for 1,4-benzoxazin-3-one, a putative precursor of HBOA, but to significantly less extent than that for HBOA and indole.  相似文献   

15.
Factors affecting the inhibitory activity of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) against Erwinia carotovora, a nonpathogen of Zea mays L., and against a maize pathovar of Erwinia chrysanthemi (ECZ) were examined. Most experiments were performed with DIMBOA dissolved in a bacterial growth medium containing 10 g/liter of sucrose, inorganic salts, and 1 g/liter of casamino acids at pH 6.75. When temperature and pH were held constant, inhibition of E. carotovora varied linearly with the logarithm of the initial cell population. By altering temperatures, assays with constant pH and initial cell populations were performed under conditions of varying DIMBOA stability. When E. carotovora was grown at 24, 28, 32, and 36 C in the presence of 0.1 to 0.5 mm DIMBOA, the inhibition of bacterial growth was maintained long after DIMBOA had decomposed in the medium to levels which, if added initially, would not have been inhibitory. When assays were performed at pH 5.5, the pH of aqueous maize extracts, E. carotovora was more inhibited than at pH 6.75; however, ECZ was substantially less inhibited at the lower pH.  相似文献   

16.
Contents of three 1,4-benzoxazin-3-ones in tissue samples from different parts (young leaf, second leaf, old leaf, stem and root) of young maize plants of 4-leaves stage, fed by the third instar larvae of the Asian corn borer, Ostrinia furnacalis (Guenée), were analyzed by high-performance liquid chromatography-mass spectroscopy (HPLC-MS). Samples were taken immediately (set A) or 48 h (set B) after larvae had fed on the second leaf for 48 h. The three 1,4-benzoxazin-3-ones investigated in our experiments were 2,4-dihydroxy-7-methoxy-1,4(2H)-benzoxazin-3-one (DIMBOA), 2,4-dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA) and 2-hydroxy-7-methoxy-1,4(2H)-benzoxazin-3-one (HMBOA). In samples of set A, the levels of DIMBOA and HMBOA were significantly lifted in the old leaf (L3) and young leaf (L1), respectively, while amounts of these two chemicals in other plant parts were not significantly different between larvae-fed plants and intact plants. Concentrations of DIBOA in each plant part remained unchanged. In samples of set B, no concentration differences for any of these three 1,4-benzoxazin-3-ones between larvae-fed plants and controls were observed in any plant part. The feeding of the Asian corn borer seems to have limited effects on induction of these three 1,4-benzoxazin-3-ones in young maize plants of the variety investigated.  相似文献   

17.
A cyclic hydroxamate, 2,4-dihydroxy-7-methoxy-2H- 1,4-benzoxazin-3(4H)-one (DIMBOA), was isolated and identified from shoots of 6-day-old corn seedlings grown in the dark. From 100 g of plant tissue 100 mg of DIMBOA were isolated. This hydroxamate was very effective in catalysing the hydrolysis of the pyrimidinyl organophosphate insecticide, diazinon (O, O-diethyl- O-[6- methyl-2-(1-methylethyl)-4-pyrimidinyl] phosphorothioate) to 6- methyl-2-(1-methylethyl)-4-hydroxypyrimidine and diethyl phosphorothioic acid. The optimum pH for hydrolytic activity was 5 and at pH values equal to or higher than the pKa of the hydroxamic group (6.95) most of the activity was lost.  相似文献   

18.
Maize microsomal benzoxazinone N-monooxygenase   总被引:3,自引:0,他引:3       下载免费PDF全文
The benzoxazinones occur in hydroxamic acid and lactam forms in maize (Zea mays L.) tissue. The hydroxamic acid forms which possess a N-hydroxyl group are found in the highest concentration while the lactam members which lack the N-hydroxyl group occur in lower concentrations. The hydroxamic acid 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) has as its lactam counterpart 2-hydroxy-1,4-benzoxazin-3-one (HBOA). An enzyme has been identified in maize microsomal preparations which catalyzes the N-hydroxylation of HBOA to form DIBOA. The enzyme is initially observed in seedlings 2 days after imbibition which coincides with the onset of hydroxamic acid accumulation. The enzyme requires NADPH and is inhibited by sulfhydryl reagents, NADP, cytochrome c, cations, carbon monoxide, and nitrogen gas. The effect of nitrogen can be reversed by exposing the enzyme to air, while the effect of carbon monoxide can be reversed by exposing the enzyme to 450 nanometer light during the incubation period. The apparent Km values for HBOA and NADPH are 13 and 5 micromolar, respectively. The pH optimum is 7.5 and the temperature optimum for the enzyme is 35°C. A 450 nanometer absorbance peak is observed when reduced microsomal preparations are exposed to carbon monoxide which in combination with other data presented supports the hypothesis that the enzyme is a cytochrome P-450 dependent N-monooxygenase.  相似文献   

19.
The preformed antimicrobial compounds produced by maize, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one and its desmethoxy derivative 2,4-dihydroxy-2H-1,4-benzoxazin-3-one, are highly reactive benzoxazinoids that quickly degrade to the antimicrobials 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA), respectively. Fusarium verticillioides (= F. moniliforme) is highly tolerant to MBOA and BOA and can actively transform these compounds to nontoxic metabolites. Eleven of 29 Fusarium species had some level of tolerance to MBOA and BOA; the most tolerant, in decreasing order, were F. verticillioides, F. subglutinans, F. cerealis (= F. crookwellense), and F. graminearum. The difference in tolerance among species was due to their ability to detoxify the antimicrobials. The limited number of species having tolerance suggested the potential utility of these compounds as biologically active agents for inclusion within a semiselective isolation medium. By replacing the pentachloronitrobenzene in Nash-Snyder medium with 1.0 mg of BOA per ml, we developed a medium that resulted in superior frequencies of isolation of F. verticillioides from corn while effectively suppressing competing fungi. Since the BOA medium provided consistent, quantitative results with reduced in vitro and taxonomic efforts, it should prove useful for surveys of F. verticillioides infection in field samples.  相似文献   

20.
Benzoxazinoids are common defence compounds of the grasses and are sporadically found in single species of two unrelated orders of the dicots. In the three dicotyledonous species Aphelandra squarrosa, Consolida orientalis and Lamium galeobdolon the main benzoxazinoid aglucon is 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA). While benzoxazinoids in Aphelandra squarrosa are restricted to the root, in Consolida orientalis and Lamium galeobdolon DIBOA is found in all above ground organs of the adult plant in concentrations as high as in the seedling of maize. The initial biosynthetic steps in dicots and monocots seem to be identical. Indole is most probably the first specific intermediate that is oxygenated to indolin-2-one by a cytochrome P450 enzyme. C. orientalis has an active indole-3-glycerolphosphate lyase for indole formation that evolved independently from its orthologous function in maize. The properties and evolution of plant indole-3-glycerolphosphate lyases are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号