首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Staphylococcal toxic shock syndrome toxin-1 (TSST-1) as well as staphylococcal enterotoxin A (SEA) and B (SEB) have recently been shown to bind directly to the class II major histocompatibility antigen, HLA-DR. Whereas others have characterized TSST-1 and SEA binding to HLA-DR on transfected L cells or B lymphoma cell lines, we sought evidence for direct binding of TSST-1 and SEA to HLA-DR on purified human monocytes. A single class of high-affinity receptors was found for both TSST-1 (dissociation constant (Kd) 40 nM, 3.4 x 10(4) receptors per cell) and SEA (Kd 12 nM, 3.2 x 10(4) receptors per cell) on normal human monocytes. Affinity cross-linking of 125I-labeled toxins to monocytes revealed the presence of two membrane protein subunits with molecular masses consistent with the alpha and beta chains of human HLA-DR (35 and 28 kDa, respectively). The anti-HLA-DR monoclonal antibody L243, but not L203 or 2.06, inhibited radiolabeled toxin binding to human monocytes and neutralized the mitogenic response of human T lymphocytes to both toxins. However, L243 was consistently more effective in blocking radiolabeled TSST-1 than SEA binding to human monocytes from the same donors, suggesting that TSST-1 and SEA may be binding to overlapping epitopes rather than to the same epitope on HLA-DR. Because TSST-1 and SEB bind to distinct epitopes on HLA-DR and because SEA cross competes with both TSST-1 and SEB on the HLA-DR receptor, we postulate that SEA occupies a binding site within HLA-DR that overlaps both TSST-1 and SEB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Toxic shock syndrome toxin-1 (TSST-1) and staphylococcal enterotoxins (SE) A, B, and C were studied on binding to rabbit spleen cells. The toxins showed remarkable mitogenic effects on the cells. Among them, SEA and TSST-1 had much stronger mitogenic activities than SEB and SEC. Binding study showed that labeled TSST-1 and SEA bound considerably to cells, but that labeled SEB or SEC was not observed to bind at a detectable level under the same conditions as TSST-1 and SEA. Competitive binding analysis between toxins to cells proved that TSST-1 and SEA clearly competed with each other in binding. Scatchard plots for TSST-1 and SEA in binding were linear at the doses used. The Scatchard analysis for TSST-1 and SEA gave a dissociation constant of 2.5 X 10(-9) M and 7.6 X 10(-8) M and the number of binding sites per cell of 5.3 X 10(3) and 1.0 X 10(5), respectively.  相似文献   

3.
Using a newly developed fluorescent nanoparticle (NP) that gives rise to a high-intensity and stable fluorescent light, a sensitive antibody (Ab) microarray assay system has been developed for specific detection of bioterrorism agents, as exemplified by ricin, cholera toxin (CT), and staphylococcal enterotoxin B (SEB). The Ab microarray uses a sandwich format that consists of capture Abs, analytes (toxins), biotinylated detection Abs, and avidin-conjugated NP. In all three cases, polyclonal Abs (pAbs) displayed superiority over monoclonal antibodies (mAbs) in capturing toxins on microarray slides even when the pAbs and mAbs had similar affinity as determined by enzyme-linked immunosorbent assay (ELISA). The detection system was successfully used to detect toxins spiked in milk, apple cider, and blood samples. We were able to detect ricin at 100 pg/ml in buffer and at 1 ng/ml in spiked apple cider or milk, whereas CT and SEB were detected at 10 pg/ml in buffer and 100 pg/ml in spiked apple cider or milk. High specificities were also demonstrated in the detection of mixed toxin samples with similar sensitivities. The matrix effect of blood samples on the detection of mixed toxins seems to be minimal when the toxin concentration is at or above 100 ng/ml. The current study highlights the significant role of pAb and NP in increasing selectivity and sensitivity of toxin detection in a microarray format.  相似文献   

4.
Staphylococcus enterotoxin B (SEB) is one of several toxins produced by the gram positive bacterium Staphylococcus aureus. SEB is a major cause of food poisoning and represents a significant biological threat with regard to bioterrorism. A rapid, sensitive, and specific method is required to monitor food and water in cases of both natural and intentional contamination by this toxin. This report presents an improved immunochromatographic test (ICT) using immunoliposomes as label for the detection of SEB. For the first time in an ICT, the signal generated by the sulforhodamine B encapsulated into immunoliposomes was measured by fluorescence, allowing a 15-fold increase in sensitivity compared with that for visual detection of colored labels. The ICT was completed within 30 min, providing a limit of detection close to 20 pg/ml in buffer and showing no cross-reactivity with the other major toxin of the bacterium, Staphylococcus enterotoxin A. This sensitivity was retained when analyzing SEB spiked in various alimentary matrices, mimicking contaminated foods. Due to the use of fluorescent immunoliposomes as label, the present assay offers the inherent simplicity and speed of a dipstick assay while providing detection of low levels of SEB in real samples.  相似文献   

5.
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

6.
A proteomics assay was set up to analyze food substrates for eight toxins of the CBRN (chemical, biological, radiological and nuclear) threat, namely ricin, Clostridium perfringens epsilon toxin (ETX), Staphylococcus aureus enterotoxins (SEA, SEB and SED), shigatoxins from Shigella dysenteriae and entero‐hemorragic Escherichia coli strains (STX1 and STX2) and Campylobacter jejuni cytolethal distending toxin (CDT). The assay developed was based on an antibody‐free sample preparation followed by bottom‐up LC‐MS/MS analysis operated in targeted mode. Highly specific detection and absolute quantification were obtained using isotopically labeled proteins (PSAQ standards) spiked into the food matrix. The sensitivity of the assay for the eight toxins was lower than the oral LD50 which would likely be used in a criminal contamination of food supply. This assay should be useful in monitoring biological threats. In the public‐health domain, it opens the way for multiplex investigation of food‐borne toxins using targeted LC‐MS/MS.  相似文献   

7.
A real-time immunoquantitative PCR (iqPCR) method for detection of Staphylococcus aureus enterotoxin B (SEB) was developed and evaluated using both pure cultures and foods. The assay consisted of immunocapture of SEB and real-time PCR amplification of the DNA probe linked to the detection antibody. iqPCR was compared to an in-house enzyme-linked immunosorbent assay (ELISA) using the same couple of capture-detection antibodies and to commercial kits for detection of S. aureus enterotoxins (SE). The iqPCR was approximately 1,000 times more sensitive (<10 pg ml−1) than the in-house ELISA and had a dynamic range of approximately 10 pg ml−1 to approximately 30,000 pg ml−1. iqPCR was not inhibited by any of the foods tested and was able to detect SEB present in these foods. No cross-reactivity with SE other than SEB was observed. Application of iqPCR for detection of SEB in cultures of S. aureus revealed the onset of SEB production after 4 h of incubation at 22, 37, and 42°C, which was in the first half of the exponential growth phase. The total amounts of SEB produced by the two strains tested were larger at 42°C than at 37°C and were strain dependent.  相似文献   

8.
Staphylococcal toxins bind to different sites on HLA-DR   总被引:5,自引:0,他引:5  
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin 1 (TSST-1) bind to MHC class II molecules and the toxin-class II complexes induce proliferation of T cells bearing specific V beta sequences. We have previously reported that these toxins display varying binding affinities for HLA-DR1. We now investigated whether these differences simply reflected differences in binding affinity for a single class II binding site or, at least in part, the engagement of different binding sites on the HLA-DR complex. Through competitive binding studies we show that SEB and TSST-1, which are not closely related by their amino acid sequences, bind to two different sites on HLA-DR. Both of these sites are also occupied by staphylococcal enterotoxin A (SEA), enterotoxin D (SED), and enterotoxin E (SEE) which exhibit more than 70% amino acid sequence homology. SEB and TSST-1 failed to inhibit SEA binding to HLA-DR. These studies suggest that there may be three distinct, although perhaps overlapping, binding sites on HLA-DR for these toxins. Further, although SED and SEE are similar to SEA in structure, and appear to bind the same sites on HLA-DR as SEA, they displayed significantly lower binding affinities. T cell proliferative responses to SED required a higher concentration of the toxin than SEA, probably reflecting its lower binding affinity. SEE, however, elicited T cell responses at very low concentrations, similar to SEA, despite its much lower binding affinity. Therefore, although the affinities of these toxins to MHC class II molecules appear to significantly influence the T cell responses, the effective recognition of the toxin-class II complex by the TCR may also contribute to such responses.  相似文献   

9.
A highly sensitive test system, based on the immuno-PCR method, was developed for the detection of two staphylococcal toxins: enterotoxin A (SEA) and toxic shock syndrome toxin (TSST). A key element of the developed systems was to obtain supramolecular complexes of bisbiotinylated oligodeoxynucleotides and streptavidin, which were to be used as DNA-tags. Specificity studies showed no cross-reactivity when determining SEA and TSST. The sensitivity of detection of these toxins in the culture supernatants S. aureus was not lower than 10 pg/mL.  相似文献   

10.
《MABS-AUSTIN》2013,5(1):119-129
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

11.
12.
Enterotoxins of Staphylococcus aureus are among the most common causes of food poisoning. Acting as superantigens they intoxicate the organism by causing a massive uncontrolled T cell activation that ultimately may lead to toxic shock and death. In contrast to our detailed knowledge regarding their interaction with the immune system, little is known about how they penetrate the epithelial barrier to gain access to their targets. We therefore studied the uptake of two staphylococcal enterotoxins (SEs), SEA and SEB, using organ cultured porcine jejunal explants as model system. Attachment of both toxins to the villus surface was scarce and patchy compared with that of cholera toxin B (CTB). SEA and SEB also bound to microvillus membrane vesicles in vitro, but less efficiently than CTB, and the binding was sensitive to treatment with endoglycoceramidase II, indicating that a glycolipid, possibly digalactosylceramide, acts as cell surface receptor at the brush border. Both SEs partitioned poorly with detergent resistant membranes (DRMs) of the microvillus, suggesting a weak association with lipid raft microdomains. Where attachment occurred, cellular uptake of SEA and SEB was also observed. In enterocytes, constitutive apical endocytosis normally proceeds only to subapical early endosomes present in the actomyosin-rich “terminal web” region. But, like CTB, both SEA and SEB penetrated deep into the cytoplasm. In conclusion, the data show that after binding to the enterocyte brush border SEA and SEB perturb the apical membrane trafficking, enabling them to engage in transcytosis to reach their target cells in the subepithelial lamina propria.  相似文献   

13.
Staphylococcal enterotoxin (SE) B, a heat-stable toxin secreted by Staphylococcus aureus, has been implicated in the pathogenesis and exacerbation of several critical illnesses. It has been hypothesized that enterotoxins may interact with blood products such as platelets, in addition to T-lymphocytes and renal proximal tubule cells. The aim of this present study was to elucidate whether SEB directly alters human platelet function. Human platelet rich plasma (PRP) was pre-incubated with SEA, SEB, SEC or TSST-1, (at various concentrations and incubation times). After incubation, PRP was exposed to thrombin and aggregation was assessed. Incubation with all toxins tested resulted in decreased aggregation, specifically; exposure to 10μ g/ml of SEB for 30 min caused a 20% decrease and a 49% decrease at 90 min. A similar reduction in aggregation was seen in samples incubated with phorbol myristate acetate, a known stimulator of protein kinase C (PKC). Further, platelets exposed to SEB exhibited an increased plasma membrane PKC activity. Sphingosine, an inhibitor of PKC proved to block the SEB-induced reduction in aggregation. SEB effects on platelet metabolism were investigated using high performance liquid chromatography showing up to a 2-fold increase of active metabolites lipoxin A4 and 12-HETE, as compared to control. These data indicate that SEB is able to induce platelet dysfunction, and these effects may be mediated through activation of PKC.The views of the authors do not purport to reflect the position of the Department of the Army or the Department of Defense (Para, 4–3) AR360-5.  相似文献   

14.
Epidemiological evidence indicates infants immunised against diphtheria, pertussis and tetanus (DPT) are at decreased risk of sudden infant death syndrome (SIDS). Asymptomatic whooping cough and pyrogenic toxins of Staphylococcus aureus have been implicated in the aetiology of SIDS. The objectives of the present study were: (1) to determine if the DPT vaccine induced antibodies cross-reactive with the staphylococcal toxins; (2) to determine if antibodies to the pertussis toxin (PT) and the staphylococcal toxins were present in the sera of women during late pregnancy; (3) to examine the effects of infant immunisation on levels of antibodies to PT and the staphylococcal toxins; (4) to assess the effects of changes in immunisation schedules in the UK on the incidence and age distribution of SIDS. Enzyme-linked immunosorbent assays (ELISA) were used to measure binding of rabbit or human IgG to the DPT vaccine, PT, toxic shock syndrome toxin-1 (TSST-1) and staphylococcal enterotoxins A (SEA), B (SEB) and C (SEC). Neutralisation activity of anti-DPT serum was assessed by a bioassay for induction of nitric oxide from human monocytes by the staphylococcal toxins. Anti-DPT serum bound to the DPT vaccine, PT and each of the staphylococcal toxins. It also reduced the ability of the four toxins to induce nitric oxide from monocytes. In pregnant women, levels of IgG to PT, SEC and TSST-1 decreased significantly in relation to increasing weeks of gestation while antibodies to SEA and SEB increased. In infants' sera there were significant correlations between levels of IgG bound to DPT and IgG bound to PT, TSST-1 and SEC but not SEA or SEB. Antibody levels to the toxins in infants declined with age; sera from infants < or = 2 months of age had higher levels of IgG bound to the toxins than those older than 2 months. This pattern was observed for infants whose immunisation schedules began at 2 months of age or 3 months of age. The decrease in IgG bound to the toxins was, however, less for those immunised at 2 months. The decrease in SIDS deaths after the change in immunisation schedules was greatest in the 4-6-month age range. While DPT immunisation might prevent some unexplained infant deaths due to asymptomatic whooping cough, these data indicate that immunisation with DPT also induces antibodies cross-reactive with pyrogenic staphylococcal toxins implicated in many cases of SIDS. Passive immunisation of infants who have low levels of these antibodies might reduce further the numbers of these infant deaths.  相似文献   

15.
16.
Sensitive and specific electrochemiluminescence (ECL) assays were used to detect Clostridium botulinum neurotoxins serotypes A, B, E, and F in undiluted human serum, undiluted human urine, assay buffer, and selected food matrices (whole milk, apple juice, ground beef, pastry, and raw eggs). These novel assays used paramagnetic bead-based electrochemiluminescent technology in which biotinylated serotype-specific antibodies were bound to streptavidin-coated paramagnetic beads. The beads acted as the solid support and captured analyte from solution. Electrochemiluminescent detection relied on the use of ruthenium chelate-labeled anti-serotype antibodies and analysis with a BioVeris M-Series M1R analyzer. The sensitivities of the assays in clinically relevant matrices were 50 pg/ml for serotypes A and E, 100 pg/ml for serotype B, and 400 pg/ml for serotype F. The detection limits in selected food matrices ranged from 50 pg/ml for serotype A to 50 to 100 pg/ml for serotypes B, E, and F. The antibodies used for capture and detection exhibited no cross-reactivity when tested with the other serotypes. When purified native toxin was compared with toxins complexed to neurotoxin-associated proteins, no significant differences in assay response were noted for serotypes A, B, and F. Interestingly, the native form of serotype E exhibited reduced signal and limit of detection compared with the complexed form of the protein. We suspect that this difference may be due to trypsin activation of this particular serotype. The assays described in this article demonstrate limits of detection similar in range to the gold standard mouse bioassay, but with greatly reduced time to data. These rapid sensitive assays may have potential use in clinical settings, research studies, and screening of food products for botulinum toxins.  相似文献   

17.
Qiu J  Zhang X  Luo M  Li H  Dong J  Wang J  Leng B  Wang X  Feng H  Ren W  Deng X 《PloS one》2011,6(1):e16160

Background

The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L.) Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil) has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins.

Methodology/Principal Findings

A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF) release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins), and toxic shock syndrome toxin 1 (TSST-1) in both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA).

Conclusions/Significance

The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins.  相似文献   

18.
The direct skin test in highly sensitized guinea pigs was developed as a rapid and extremely sensitive assay for detection of staphylococcal enterotoxin B (SEB) in foods. This report details the experimental conditions required to elicit optimal sensitization of guinea pigs to SEB. An intense and persistent immunoglobulin E (IgE) anti-SEB response was established in strain 13 guinea pigs pretreated with cyclophosphamide followed by four sensitizing doses of 10 micrograms of SEB 1 month apart. The conditions, however, optimal for eliciting IgE responses led to a sustained failure to produce antibody of the IgG1 subclass. With the use of highly sensitized guinea pigs, one can achieve a sensitivity ranging from 0.1 to 1.0 pg of purified SEB by the direct skin test for at least 7 months after the last challenge. For analysis of SEB in food extracts, the entire assay can be accomplished within 20 min with a sensitivity of 10 to 100 pg SEB per ml of prepared food samples, and the recovery of enterotoxin from spiked food products ranged between 75 and 89% of the amount added.  相似文献   

19.
A new approach for the detection of virulence factors of Staphylococcus aureus and Staphylococcus epidermidis using an electrical protein array chip technology is presented. The procedure is based on an enzyme-linked sandwich immunoassay, which includes recognition and binding of virulence factors by specific capture and detection antibodies. Detection of antibody-bound virulence factors is achieved by measuring the electrical current generated by redox recycling of an enzymatically released substance. The current (measured in nanoampere) corresponds to the amount of the target molecule in the analyzed sample. The electrical protein chip allows for a fast detection of Staphylococcus enterotoxin B (SEB) of S. aureus and immunodominant antigen A homologue (IsaA homologue) of S. epidermidis in different liquid matrices. The S. aureus SEB virulence factor could be detected in minimal medium, milk, and urine in a concentration of 1 ng/ml within less than 23 min. Furthermore, a simultaneous detection of SEB of S. aureus and IsaA homologue of S. epidermidis in a single assay could be demonstrated.  相似文献   

20.
An amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Clostridium botulinum complex neurotoxins was evaluated for its ability to detect these toxins in food. The assay was found to be suitable for detecting type A, B, E, and F botulinum neurotoxins in a variety of food matrices representing liquids, solid, and semisolid food. Specific foods included broccoli, orange juice, bottled water, cola soft drinks, vanilla extract, oregano, potato salad, apple juice, meat products, and dairy foods. The detection sensitivity of the test for these botulinum complex serotypes was found to be 60 pg/ml (1.9 50% lethal dose [LD50]) for botulinum neurotoxin type A (BoNT/A), 176 pg/ml (1.58 LD50) for BoNT/B, 163 pg/ml for BoNT/E (4.5 LD50), and 117 pg/ml for BoNT/F (less than 1 LD50) in casein buffer. The test could also readily detect 2 ng/ml of neurotoxins type A, B, E, and F in a variety of food samples. For specificity studies, the assay was also used to test a large panel of type A C. botulinum, a smaller panel of proteolytic and nonproteolytic type B, E, and F neurotoxin-producing Clostridia, and nontoxigenic organisms using an overnight incubation of toxin production medium. The assay appears to be an effective tool for large-scale screening of the food supply in the event of a botulinum neurotoxin contamination event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号