首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
《The Journal of cell biology》1994,127(6):1537-1545
Translational regulation is a key modulator of gene expression in chloroplasts of higher plants and algae. Genetic analysis has shown that translation of chloroplast mRNAs requires nuclear-encoded factors that interact with chloroplastic mRNAs in a message-specific manner. Using site-specific mutations of the chloroplastic psbA mRNA, we show that RNA elements contained within the 5' untranslated region of the mRNA are required for translation. One of these elements is a Shine- Dalgarno consensus sequence, which is necessary for ribosome association and psbA translation. A second element required for high levels of psbA translation is located adjacent to and upstream of the Shine-Dalgarno sequence, and maps to the location on the RNA previously identified as the site of message-specific protein binding. This second element appears to act as a translational attenuator that must be overcome to activate translation. Mutations that affect the secondary structure of these RNA elements greatly reduce the level of psbA translation, suggesting that secondary structure of these RNA elements plays a role in psbA translation. These data suggest a mechanism for translational activation of the chloroplast psbA mRNA in which an RNA element containing the ribosome-binding site is bound by message- specific RNA binding proteins allowing for increased ribosome association and translation initiation. These elements may be involved in the light-regulated translation of the psbA mRNA.  相似文献   

14.
15.
Gene expression in chloroplasts is controlled primarily through the regulation of translation. This regulation allows coordinate expression between the plastid and nuclear genomes, and is responsive to environmental conditions. Despite common ancestry with bacterial translation, chloroplast translation is more complex and involves positive regulatory mRNA elements and a host of requisite protein translation factors that do not have counterparts in bacteria. Previous proteomic analyses of the chloroplast ribosome identified a significant number of chloroplast-unique ribosomal proteins that expand upon a basic bacterial 70S-like composition. In this study, cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome to a resolution of 15.5 Å. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core. These structures are located at optimal positions on the chloroplast ribosome for interaction with mRNAs during translation initiation. Visualization of these chloroplast-unique structures on the ribosome, combined with mRNA cross-linking, allows us to propose a model for translation initiation in chloroplasts in which chloroplast-unique ribosomal proteins interact with plastid-specific translation factors and RNA elements to facilitate regulated translation of chloroplast mRNAs.  相似文献   

16.
17.
Proteins belonging to the enhancer of RNA interference‐1 subfamily of 3′–5′ exoribonucleases participate in divergent RNA pathways. They degrade small interfering RNAs (siRNAs), thus suppressing RNA interference, and are involved in the maturation of ribosomal RNAs and the degradation of histone messenger RNAs (mRNAs). Here, we report evidence for the role of the plant homologue of these proteins, which we termed ENHANCED RNA INTERFERENCE‐1‐LIKE‐1 (ERIL1), in chloroplast function. In vitro assays with AtERIL1 proved that the conserved 3′–5′ exonuclease activity is shared among all homologues studied. Confocal microscopy revealed that ERL1, a nucleus‐encoded protein, is targeted to the chloroplast. To gain insight into its role in plants, we used Nicotiana benthamiana and Arabidopsis thaliana plants that constitutively overexpress or suppress ERIL1. In the mutant lines of both species we observed malfunctions in photosynthetic ability. Molecular analysis showed that ERIL1 participates in the processing of chloroplastic ribosomal RNAs (rRNAs). Lastly, our results suggest that the missexpression of ERIL1 may have an indirect effect on the microRNA (miRNA) pathway. Altogether our data point to an additional piece of the puzzle in the complex RNA metabolism of chloroplasts.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号