首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In 2010, cabbages (Brassica oleracea L.) showing symptoms of proliferated axillary buds, crinkled leaves and plant stunting with shortened internodes typical to phytoplasma infection were found in a breeding facility in Beijing, China. Three symptomatic plants and one symptomless plant were collected, and total DNA was extracted from the midrib tissue and the flowers. With phytoplasma universal primers R16F2n/R16R2, a special fragment of 1247 bp (16S rDNA) was obtained from all three symptomatic cabbage plants, but not from the one symptomless cabbage plant. The 16S rDNA sequence showed 99% similarity with the homologous genes of the aster yellows group phytoplasma (16SrI group), and the phytoplasma was designed as CWBp‐BJ. Phylogenetic and computer‐simulated restriction fragment length polymorphism (RFLP) analysis of the 16S rDNA gene revealed that CWBp‐BJ belongs to subgroup 16SrI‐B. This is the first report of a phytoplasma associated with cabbage witches’‐broom in China.  相似文献   

2.
During January 2010, severe stunting symptoms were observed in clonally propagated oil palm (Elaeis guineensis Jacq.) in West Godavari district, Andhra Pradesh, India. Leaf samples of symptomatic oil palms were collected, and the presence of phytoplasma was confirmed by nested polymerase chain reaction (PCR) using universal phytoplasma‐specific primer pairs P1/P7 followed by R16F2n/R16R2 for amplification of the 16S rRNA gene and semi‐nested PCR using universal phytoplasma‐specific primer pairs SecAfor1/SecArev3 followed by SecAfor2/SecArev3 for amplification of a part of the secA gene. Sequencing and BLAST analysis of the ~1.25 kb and ~480 bp of 16S rDNA and secA gene fragments indicated that the phytoplasma associated with oil palm stunting (OPS) disease was identical to 16SrI aster yellows group phytoplasma. Further characterization of the phytoplasma by in silico restriction enzyme digestion of 16S rDNA and virtual gel plotting of sequenced 16S rDNA of ~1.25 kb using iPhyClassifier online tool indicated that OPS phytoplasma is a member of 16SrI‐B subgroup and is a ‘Candidatus Phytoplasma asteris’‐related strain. Phylogenetic analysis of 16S rDNA and secA of OPS phytoplasma also grouped it with 16SrI‐B. This is the first report of association of phytoplasma of the 16SrI‐B subgroup phytoplasma with oil palm in the world.  相似文献   

3.
Symptoms of unknown aetiology on Rhododendron hybridum cv. Cunningham's White were observed in the Czech Republic in 2010. The infected plant had malformed leaves, with irregular shaped edges, mosaic, leaf tip necrosis and multiple axillary shoots with smaller leaves. Transmission electron microscopy showed phytoplasma‐like bodies in phloem cells of the symptomatic plant. Phytoplasma presence was confirmed by polymerase chain reaction using phytoplasma‐specific, universal and group‐specific primer pairs. Restriction fragment length polymorphism analysis of 16S rDNA enabled classification of the detected phytoplasma into the aster yellows subgroup I‐C. Sequence analysis of the 16S‐23S ribosomal operon of the amplified phytoplasma genome from the infected rhododendron plant (1724 bp) confirmed the closest relationship with the Czech Echinacea purpurea phyllody phytoplasma. These data suggest Rhododendron hybridum is a new host for the aster yellows phytoplasma subgroup 16SrI‐C in the Czech Republic and worldwide.  相似文献   

4.
Melia azedarach var. japonica trees with leaf yellowing, small leaves and witches' broom were observed for the first time in Korea. A phytoplasma from the symptomatic leaves was identified based on the 16Sr DNA sequence as a member of aster yellows group, ribosomal subgroup 16SrI‐B. Sequence analyses of more variable regions such as 16S–23S intergenic spacer region, secY gene, ribosomal protein (rp) operon and tuf gene showed 99.5?100% nucleotide identity to several GenBank sequences of group 16SrI phytoplasmas. Phylogenetic analysis confirmed that the Melia azedarach witches' broom phytoplasma belongs to aster yellows group.  相似文献   

5.
Prickly ash trees with shortened internodes, proliferation of shoots, phyllody and witches' brooms were observed for the first time in Korea. A phytoplasma was detected in infected trees by polymerase chain reaction amplification of 16S rDNA, 16S–23S intergenic spacer region and the fragment of rp operon sequences. The 16S rDNA sequences exhibited maximum (99.6%) similarity with Iranian lettuce phytoplasma, and the sequences of rp operon exhibited maximum (100%) similarity with golden rain phytoplasma. Based on the sequence analysis and phylogenetic studies, it was confirmed that phytoplasma infecting prickly ash trees in Korea belongs to the aster yellows group (subgroup 16SrI‐B).  相似文献   

6.
In October 2013, a new disease affecting purple woodnettle, Oreocnide pedunculata, plants was found in Miaoli County, Taiwan. Diseased plants exhibited leaf yellowing and witches'‐broom symptoms. Molecular diagnostic tools and electron microscopic cell observation were used to investigate the possible cause of the disease with a specific focus on phytoplasmas. The result of polymerase chain reaction with universal primer pairs indicated that phytoplasmas were strongly associated with the symptomatic purple woodnettles. The virtual restriction fragment length polymorphism (RFLP) patterns and phylogenetic analysis based on 16S rDNA and ribosomal protein, rplV‐rpsC region revealed that purple woodnettle witches'‐broom phytoplasma (PWWB) belongs to a new subgroup of 16SrI and rpI group and was designated as 16SrI‐AH and rpI‐Q, respectively, herein. RFLP analysis based on tuf gene region revealed that the PWWB belongs to tufI‐B, but phylogenetic analysis suggested that PWWB should be delineated to a new subgroup under the tufI group. Taken together, our analyses based on 16S rRNA and rplV‐rpsC region gave a finer differentiation while classifying the subgroup of aster yellows group phytoplasmas. To our knowledge, this is the first report of a Candidatus Phytoplasma asteris‐related strain in 16SrI‐AH, rpI‐Q and tufI‐B subgroup affecting purple woodnettle, and of an official documentation of purple woodnettle as being a new host of phytoplasmas.  相似文献   

7.
Symptoms of rapeseed phyllody were observed in rapeseed fields of Fars, Ghazvin, Isfahan, Kerman and Yazd provinces in Iran. Circulifer haematoceps leafhoppers testing positive for phytoplasma in polymerase chain reaction (PCR) successfully transmitted a rapeseed phyllody phytoplasma isolate from Zarghan (Fars province) to healthy rapeseed plants directly after collection in the field or after acquisition feeding on infected rapeseed in the greenhouse. The disease agent was transmitted by the same leafhopper from rape to periwinkle, sesame, stock, mustard, radish and rocket plants causing phytoplasma‐type symptoms in these plants. PCR assays using phytoplasma‐specific primer pair P1/P7 or nested PCR using primers P1/P7 followed by R16F2n/R2, amplified products of expected size (1.8 and 1.2 kbp, respectively) from symptomatic rapeseed plants and C. haematoceps specimens. Restriction fragment length polymorphism analysis of amplification products of nested PCR and putative restriction site analysis of 16S rRNA gene indicated the presence of aster yellows‐related phytoplasmas (16SrI‐B) in naturally and experimentally infected rapeseed plants and in samples of C. haematoceps collected in affected rapeseed fields. Sequence homology and phylogenetic analysis of 16S rRNA gene confirmed that the associated phytoplasma detected in Zarghan rapeseed plant is closer to the members of the subgroup 16SrI‐B than to other members of the AY group. This is the first report of natural occurrence and characterization of rapeseed phyllody phytoplasma, including its vector identification, in Iran.  相似文献   

8.
Primula acaulis (L.) Hill. plants showing stunting, leaf‐yellowing and virescence were first discovered in the Czech Republic. Polymerase chain reactions with subsequent restriction fragment length polymorphism analyses and sequencing enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐B, tufI‐B, rpI‐B, groELIB‐III and SecY‐IB subgroups. Phylogeny of the 16S rRNA gene sequences as well as sequence analysis of several chromosomal regions, such as the 16S‐23S ribosomal operon, ribosomal proteins, spc ribosomal protein operon, genes for elongation factor EF‐Tu, molecular chaperonin large subunit GroEL, immunodominant membrane protein, ribosome recycling factor, urydilate kinase, ATP‐ and Zn2+‐dependent proteases not only confirmed its affiliation with the ‘Candidatus Phytoplasma asteris’ species but also enabled its detailed molecular characterization. The less researched regions of phytoplasma genome (amp, adk, hflB, pyrHfrr genes) could be valuable as additional markers for phytoplasma through differentiation especially within the 16SrI‐B ribosomal subgroup.  相似文献   

9.
An azalea little leaf (AzLL) disease characterised by abnormally small leaves, yellowing and witches'‐broom growth symptoms was observed in suburban Kunming, southwest China. Transmission electron microscopic observations of single‐membrane‐bound, ovoid to spherical bodies in phloem sieve elements of diseased plants and detection of phytoplasma‐characteristic 16S rRNA gene sequence in DNA samples from diseased plants provided evidence linking the disease to infection by a phytoplasma. Results from restriction fragment length polymorphism, phylogenetic and comparative structural analyses of multiple genetic loci containing 16S rRNA, rpsS, rplV, rpsC and secY genes indicated that the AzLL phytoplasma represented a distinct, new 16Sr subgroup lineage, designated as 16SrI‐T, in the aster yellows phytoplasma group. The genotyping also revealed that the AzLL phytoplasma represented new rp and secY gene lineages [rp(I)‐P and secY(I)‐O, respectively]. Phylogenetic analyses of secY and rp gene sequences allowed clearer distinctions between AzLL and closely related strains than did analysis of 16S rDNA.  相似文献   

10.
Yellowing symptoms similar to coconut yellow decline phytoplasma disease were observed on lipstick palms (Cyrtostachys renda) in Selangor state, Malaysia. Typical symptoms were yellowing, light green fronds, gradual collapse of older fronds and decline in growth. Polymerase chain reaction assay was employed to detect phytoplasma in symptomatic lipstick palms. Extracted DNA was amplified from symptomatic lipstick palms by PCR using phytoplasma‐universal primer pair P1/P7 followed by R16F2n/R16R2. Phytoplasma presence was confirmed, and the 1250 bp products were cloned and sequenced. Sequence analysis indicated that the phytoplasmas associated with lipstick yellow frond disease were isolates of ‘Candidatus Phytoplasma asteris’ belonging to the 16SrI group. Virtual RFLP analysis of the resulting profiles revealed that these palm‐infecting phytoplasmas belong to subgroup 16SrI‐B and a possibly new 16SrI‐subgroup. This is the first report of lipstick palm as a new host of aster yellows phytoplasma (16SrI) in Malaysia and worldwide.  相似文献   

11.
Symptoms resembling those associated with phytoplasma presence were observed in pomegranate (Punica granatum L.) trees in June 2012 in the Aegean Region of Turkey (Ayd?n province). The trees exhibiting yellowing, reduced vigour, deformations and reddening of the leaves and die‐back symptoms were analysed to verify phytoplasma presence. Total nucleic acids were extracted from fresh leaf midribs and phloem tissue from young branches of ten symptomatic and five asymptomatic plants. Nested polymerase chain reaction assays using universal phytoplasma‐specific 16S rRNA and tuf gene primers were performed. Amplicons were digested with Tru1I, Tsp509I and HhaI restriction enzymes, according to the primer pair employed. The phytoplasma profiles were identical to each other and to aster yellows (16SrI‐B) strain when digestion was carried out on 16Sr(I)F1/R1 amplicons. However, one of the samples showed mixed profiles indicating that 16SrI‐B and 16SrXII‐A phytoplasmas were present when M1/M2 amplicons were digested, the reamplification of this sample with tuf cocktail primers allowed to verify the presence of a 16SrXII‐A profile. One pomegranate aster yellows strain AY‐PG from 16S rRNA gene and the 16SrXII‐A amplicon from tuf gene designed strain STOL‐PG were directly sequenced and deposited in GenBank under the Accession Numbers KJ818293 and KP161063, respectively. To our knowledge, this is the first report of 16SrI‐B and 16SrXII‐A phytoplasmas in pomegranate trees.  相似文献   

12.
Phytoplasma classification established using 16S ribosomal groups and ‘Candidatus Phytoplasma’ taxon are mainly based on the 16S rDNA properties and do not always provide molecular distinction of the closely related strains such as those in the aster yellows group (16SrI or ‘Candidatus Phytoplasma asteris'‐related strains). Moreover, because of the highly conserved nature of the 16S rRNA gene, and of the not uncommon presence of 16S rDNA interoperon sequence heterogeneity, more variable single copy genes, such as ribosomal protein (rp), secY and tuf, were shown to be suitable for differentiation of closely related phytoplasma strains. Specific amplification of fragments containing phytoplasma groEL allowed studying its variability in 27 ‘Candidatus Phytoplasma asteris'‐related strains belonging to different 16SrI subgroups, of which 11 strains were not studied before and 8 more were not studied on other genes than 16S rDNA. The restriction fragment length polymorphism (RFLP) analyses of the amplified fragments confirmed differentiation among 16SrI‐A, I‐B, I‐C, I‐F and I‐P subgroups, and showed further differentiation in strains assigned to 16SrI‐A, 16SrI‐B and 16SrI‐C subgroups. However, analyses of groEL gene failed to discriminate strains in subgroups 16SrI‐L and 16SrI‐M (described on the basis of 16S rDNA interoperon sequence heterogeneity) from strains in subgroup 16SrI‐B. On the contrary, the 16SrI unclassified strain ca2006/5 from carrot (showing interoperon sequence heterogeneity) was differentiable on both rp and groEL genes from the strains in subgroup 16SrI‐B. These results indicate that interoperon sequence heterogeneity of strains AY2192, PRIVA (16SrI‐L), AVUT (16SrI‐M) and ca2006/5 resulted in multigenic changes – one evolutionary step further – only in the latter case. Phylogenetic analyses carried out on groEL are in agreement with 16Sr, rp and secY based phylogenies, and confirmed the differentiation obtained by RFLP analyses on groEL amplicons.  相似文献   

13.
Aster yellows phytoplasma were detected, for the first time, in peach trees in Al‐Jubiha and Homret Al‐Sahen area. Leaves of infected trees showed yellow or reddish, irregular water‐soaked blotches. Discoloured areas become dry and brittle and the dead tissues dropped out. Under severe infections, leaves fall down and fruits dropped prematurely. Phytoplasmas were detected from all symptomatic peach trees by polymerase chain reaction (PCR) using universal phytoplasmas primers P1/P7 followed by R16F2/R2. No amplification products were obtained from templates of asymptomatic peaches. PCR products (1.2 kb) used for restriction fragment length polymorphism analysis (RFLP) after digestion with endonuclease AluI, HpaII, KpnI and RsaI produced the same restriction profiles for all samples, and they were identical with those of American aster yellows (16SrI) phytoplasma strain. This paper is the first report on aster yellows phytoplasma affecting peach trees in Jordan.  相似文献   

14.
G. Babaie    B. Khatabi    H. Bayat    M. Rastgou    A. Hosseini    G. H. Salekdeh 《Journal of Phytopathology》2007,155(6):368-372
During field surveys in 2004, ornamental and weed plants showing symptoms resembling those caused by phytoplasmas were observed in Mahallat (central Iran). These plants were examined for phytoplasma infections by polymerase chain reaction (PCR) assays using universal phytoplasma primers directed to ribosomal DNA (rDNA). All affected plants gave positive results. The detected phytoplasmas were characterized and differentiated through restriction fragment length polymorphism (RFLP) and sequence analysis of PCR‐amplified rDNA. The phytoplasmas detected in diseased Asclepias curassavica and Celosia argentea were identified as members of clover proliferation phytoplasma group (16SrVI group) whereas those from the remaining plants examined proved to be members of aster yellow phytoplasma group (16SrI group) (‘Candidatus Phytoplasma asteris’). In particular, following digestion with AluI, HaeIII and HhaI endonucleases, the phytoplasma detected in Limonium sinuatum showed restriction profiles identical to subgroup 16SrI‐C; phytoplasmas from Gomphocarpus physocarpus, Tanatacetum partenium, Lactuca serriola, Tagetes patula and Coreopsis lanceolata had the same restriction profiles as subgroup 16SrI‐B whereas Catharanthus roseus‐ and Rudbeckia hirta‐infecting phytoplasmas showed restriction patterns of subgroup 16SrI‐A. This is the first report on the occurrence of phytoplasma diseases of ornamental plants in Iran.  相似文献   

15.
Mallotus japonicus with witches' broom disease were observed in Jeollabuk‐do, Korea. A phytoplasma from the infected leaves was identified, based on the 16S rDNA, 16S‐23S intergenic spacer region, and fragment of rp operon and tuf gene sequences. The 16S rDNA sequences exhibited maximum (99.7%) similarity with Iranian lettuce phytoplasma, the rp operon sequences exhibited 100% similarity with Goldenrain stunt phytoplasma, and the tuf gene sequences exhibited 99.8% similarity with Japanese spurge yellows phytoplasma. Results of the sequence analysis and phylogenetic studies confirmed that the phytoplasma associated with M. japonicus in Korea was an isolate of Aster Yellows group (subgroup16SrI‐B).  相似文献   

16.
Leaves from sugarcane were collected from Egyptian plantation fields and tested for phytoplasma (Sugarcane yellows phytoplasma, SCYP) and Sugarcane yellow leaf virus (SCYLV) using nested PCR (with different primers) and RT‐PCR, respectively. These results showed significant differences in the amplification of the PCR assays. The primer MLO‐X/MLO‐Y, which amplified the 16S‐23S rDNA spacer region, was the most precise to detect the phytoplasma in sugarcane plants. Sequencing and restriction fragment length polymorphism analysis revealed that all tested phytoplasmas belonged to the 16SrI (aster yellows phytoplasma) group, with the exception of cultivar G84‐47 belonged to the 16SrXI (Rice yellow dwarf phytoplasma) group. Three Egyptian sugarcane cultivars were phytoplasma free. Phylogenetic analyses of 34 screened accessions of 16S ribosomal DNA gene sequences of Candidatus phytoplasma including the ones collected from Egypt used in this study and those extracted from GenBank showed that they split into two distinct clusters. The phylogenetic analyses indicated that these phytoplasmas are closely related and share a common ancestor. All tested Egyptian sugarcane plants were infected by SCYLV with the exception of cultivar Phil‐8013 which was virus free.  相似文献   

17.
Apium graveolens L. plants showing stunting, purplish/whitening of new leaves, flower abnormalities and bushy tops were observed in South Bohemia (Czech Republic) during 2011 and 2012. Transmission electron microscopy observations showed phytoplasmas in phloem sieve tube elements of symptomatic but not healthy plants. Polymerase chain reactions with universal and group‐specific phytoplasma primers followed by restriction fragment length polymorphism analyses and sequencing of 16S rDNA enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐C. Identical analyses of the ribosomal protein genes rpl22 and rps3 were used for further classification and revealed affiliation of the phytoplasmas with the rpIC subgroups. This is the first report of naturally occurring clover phyllody phytoplasma in A. graveolens in both the Czech Republic and worldwide.  相似文献   

18.
Royal Palms (Roystonea regia) with symptoms such as severe chlorosis, stunting, collapse of older fronds and general decline were observed in the state of Selangor, Malaysia. Using polymerase chain reaction (PCR) amplification with phytoplasma universal primer pair P1/P7 followed by R16F2N/R16R2 and fU5/rU3 as nested PCR primer pairs, all symptomatic plants tested positively for phytoplasma. Results of phylogenetic and virtual RFLP analysis of the 16S rRNA gene sequences revealed that the phytoplasma associated with Royal Palm yellow decline (RYD) was an isolate of ‘Candidatus Phytoplasma asteris’ belonging to a new 16SrI‐subgroup. These results show that Roystonea regia is a new host for the aster yellows phytoplasma (16SrI). This is the first report on the presence of 16SrI phytoplasma on Royal Palm trees in Malaysia.  相似文献   

19.
Symptoms resembling phytoplasma disease were observed on Verbena × hybrida in Alanya, Turkey, during October 2013. Infected plants were growing as perennials in a flower border and showed symptoms of discoloured flowers, poor flower clusters, inflorescences with a small number of developed flowers and thickened fruit stalks. Electron microscopy examination of the ultra‐thin sections revealed polymorphic bodies in the phloem tissue of leaf midribs. The phytoplasma aetiology of this disease was confirmed by polymerase chain reaction of the 16S rRNA gene, the 16–23S rRNA intergenic spacer region and the start of the 23S rRNA gene using universal phytoplasma‐specific primer pair P1A/P7A, two ribosomal protein (rp) genes (rpl22 and rps3) (the group‐specific primer pair rp(I)F1A/rp(I)R1A) and the Tuf gene (group‐specific fTufAy/rTufAy primers) generating amplicons of 1.8 kbp, 1.2 kbp and 940 bp, respectively. Comparison of the amplified sequences with those available in GenBank allowed classification of the phytoplasma into aster yellows subgroups 16SrI‐B, rpI‐B and tufI‐B. This is the first report about molecular detection and identification of natural infection of the genus Verbena by phytoplasma and occurrence of the aster yellows group phytoplasma on an ornamental plant in Turkey.  相似文献   

20.
Samples of sugarcane leaves were collected from different commercial fields and breeding stations in Egypt. Aetiology of sugarcane phytoplasma disease was investigated using nested PCR. Phytoplasma‐specific primers (P1/P7 and R16F2n/R16R2) were used to amplify a fragment of the 16S rRNA gene. Sequencing and restriction fragment length polymorphism analyses revealed that the tested phytoplasmas belonged to the 16SrI (aster yellows phytoplasma) group. Phylogenetic analyses of 60 screened accessions of 16S ribosomal RNA gene sequences of Candidatus phytoplasmas comprising those collected from Egypt (this study) and those extracted from GenBank showed that they split into two distinct clusters. All the phytoplasmas form a stable phylogenetic subcluster, as judged by branch length and bootstrap values of 100% in the 16S group cluster. Results of phylogenetic analyses indicated that these phytoplasmas are closely related and share a common ancestor. Conversely, based on the analysis of the 16S‐23S region, examined isolates segregated into four different clusters suggesting a notable heterogeneity between them. These results are the first record of the presence of phytoplasma in association with sugarcane yellow leaf in Egypt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号