首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
温度对蜥蜴血红蛋白及血浆总蛋白浓度的影响   总被引:3,自引:0,他引:3  
研究在不同实验温度下驯化的荒漠沙蜥(Phrynocephalus)和密点麻蜥(Eremiax mul-tiocellata)的血红蛋白浓度、血浆总蛋白浓度以及血浆清蛋白与球蛋白比例的变化,结果表明;在5℃下驯化的两种蜥蜴的血红蛋白浓度都很低;而在15℃~30℃之间驯化的蜥蜴血红蛋白浓度较高且比较稳定;35℃时蜥蜴的血红蛋白浓度则下降。在同温度下密点麻蜥的血红蛋白浓度高于荒漠沙蜥。同种蜥蜴中,雄性的血红蛋白浓度高于雌性。两种蜥蜴的血浆总蛋白浓度均随驯化温度的升高而增加;荒漠沙蜥在25℃、密点麻蜥在20℃~25℃时,血浆清蛋白与球蛋白的比例基本相等,高于或低于此温度时,清蛋白的比例上升,球蛋白的比例则下降。  相似文献   

2.
荒漠沙蜥(Phrynocephalus przewalskii strauch)和密点麻蜥(Eremias multiocellata Guenther)的体温都随环境温度的变化而变化,相关非常显著(P<0.001)。在相同环境温度条件下,荒漠沙蜥的体温约高于密点麻蜥3℃,荒漠沙蜥集中选择38—40℃的环境,密点麻蜥选择35—37℃的环境。荒漠沙蜥的热僵死阈值为44—48℃,致死温度(T_(L50))为48℃,密点麻蜥的热僵死阈值为42—46℃,致死温度(T_(L50))为46℃。两种蜥蝎对低温的耐受性基本相似,冷僵温度为0——3℃,致死低温(T_(L50)):荒漠沙蜥为-2.3℃,密点麻蜥为-2.5℃。两种蜥蜴的这些差异与种的特征、栖息环境及体形的大小有关。  相似文献   

3.
李仁德  陈强 《动物学报》1996,42(3):247-252
研究在不同实验温度下驯化的荒漠沙蜥和密点麻蜥的血红蛋白浓度、血浆总蛋白浓度以及血浆清蛋白与球蛋白比例的变化,结果表明:在5℃下驯化的两种蜥蜴的血红蛋白浓度都很低;而在15-30℃之间驯化的蜥蜴血红蛋白浓度较高且比较稳定;35℃时蜥蜴的血红蛋白浓度则下降。在同温度下密眯麻蜥的血红蛋白浓度高于荒漠沙蜥。同种蜥蜴中,雄性的血红蛋白浓度高于雌性。两种蜥蜴的血浆总蛋白浓度均随驯化温度的升高而增加;荒漠沙蜥在  相似文献   

4.
荒漠沙蜥和密点麻蜥的体温都随环境温度的变化而变化,相关非常显著(P<0.001)。在相同环境温度条件下,荒漠沙蜥的体温约高于密点麻蜥3 ℃。荒漠沙蜥集中选择38-40 ℃的环境,密点麻蜥选择35-37 ℃的环境。荒漠沙蜥的热僵死阈值为44-48 ℃,致死温度(TL[50])为48 ℃,密点麻蜥的热僵死阈值为42-46 ℃,致死温度(TL[50])为46 ℃。两种蜥蜴对低温的耐受性基本相似,冷僵温度为0- -3 ℃,致死低温(TL[50]):荒漠沙蜥为-2.3 ℃,密点麻蜥为-2.5 ℃。两种蜥蜴的这些差异与种的特征、栖息环境及体形的大小有关。  相似文献   

5.
温度对蜥蜴腓肠肌ATP酶活性影响的研究   总被引:5,自引:0,他引:5  
本文研究了荒漠沙蜥(phrynocephalus Przewalskii Strauch)和密点麻蜥(Eremias multiocellataGuenther)腓肠肌肌球蛋白钙激活ATP酶活性对温度的依赖关系。结果表明,荒漠沙蜥腓肠肌ATP酶的最适温度为37℃,密点麻蜥腓肠肌ATP酶的最适温度为35℃。两种蜥蜴ATP酶最适温度的不同与它们所喜好的温度有很好的相关性。ATP酶活性在同种个体大小之间也存在差异。ATP酶的生化调节可能在蜥蜴对温度适应上起重要作用。  相似文献   

6.
有鳞类(蛇和蜥蜴)具有较发达的嗅器和犁鼻器,对其不同种类嗅觉结构的认识有助于阐明爬行动物化学感觉的进化。本文采用组织学方法比较了草原沙蜥(Phrynocephalus frontalis)、荒漠沙蜥(P. przewalskii)、密点麻蜥(Eremias multiocellata)和秦岭滑蜥(Scincella tsinlingensis)的嗅器及犁鼻器。结果发现,草原沙蜥的鼻腔较为狭长,秦岭滑蜥呈梨形,其他两种蜥蜴的鼻腔略成圆形。秦岭滑蜥的嗅上皮最厚,其次是密点麻蜥和草原沙蜥,荒漠沙蜥最薄。犁鼻器主要由犁鼻腔、犁鼻感觉上皮、犁鼻神经及蘑菇体等组成,没有腺体。草原沙蜥和荒漠沙蜥的犁鼻腔较为宽阔,密点麻蜥和秦岭滑蜥的较窄。4种蜥蜴的犁鼻感觉上皮均较嗅上皮厚,蘑菇体向后逐渐缩小至消失,犁鼻感觉上皮成闭环状,包围犁鼻腔。密点麻蜥和秦岭滑蜥的犁鼻感觉上皮位于犁鼻器的背侧,蘑菇体位于腹侧;与此不同,两种沙蜥的犁鼻感觉上皮偏向于犁鼻器的腹内侧,蘑菇体位于背外侧。密点麻蜥的犁鼻感觉上皮最厚,其次为秦岭滑蜥,两种沙蜥最薄;秦岭滑蜥犁鼻感觉上皮的感觉细胞密度最高,其次是密点麻蜥,两种沙蜥最低。这些结果提示,密点麻蜥和秦岭滑蜥对嗅觉信号的依赖和投入较两种沙蜥多;4种蜥蜴犁鼻器的结构差异间接地佐证了有鳞类犁鼻器系统发生的特异性。  相似文献   

7.
研究了密点麻蜥肝脏、骨骼肌、大脑组织中琥珀酸脱氢酶(SDH)、乳酸脱氢酶(LDH)活性对温度的依赖关系.结果表明:密点麻蜥3种组织中SDH在5~35℃范围内随温度的升高而升高,在35℃时达到峰值后随着温度的升高而下降,35℃可能为SDH的最适温度;3种组织的LDH活性随温度的升高而升高;大脑中的SDH和LDH活性最高.这表明SDH和LDH的活性与动物组织的能量代谢相适应.  相似文献   

8.
温度对兰州鲇消化酶活性的影响   总被引:12,自引:0,他引:12  
测定了兰州鲇(Silurus lanzhouensis)胃、肝胰脏、前肠、中肠、后肠在不同温度(15℃、20℃、25℃、30℃、37℃4、2℃、47℃)条件下的蛋白酶、淀粉酶和脂肪酶的活性。结果表明,随温度的升高,各种酶活性的变化均表现为先增高后下降直至不能检出。消化道各部位蛋白酶的最适温度均为42℃;淀粉酶的最适温度除胃和肝胰脏为37℃外,其他部位均为30℃;脂肪酶的最适温度除后肠为30℃外,其他部位均为25℃。消化酶的最适温度高于其生活水域的水温,反映出消化酶作为酶蛋白的耐热性。最适温度下,蛋白酶活性前肠≈中肠>后肠>肝胰脏≈胃;淀粉酶活性前肠>中肠>肝胰脏>胃>后肠;脂肪酶活性中肠>后肠>前肠≈肝胰脏>胃。研究结果还表明,前肠和中肠是兰州鲇消化蛋白的主要部位,中肠是其消化脂肪的主要部位,而前肠是其消化淀粉的主要部位。在消化酶表现出活性的温度范围内,蛋白酶活性明显高于淀粉酶活性。实验还表明脂肪酶具有活性的温度范围较蛋白酶和淀粉酶窄。  相似文献   

9.
为比较塔里木兔(Lepus yarcandensis)和家兔(Oryctolagus curiculus)消化能力的差异,探索塔里木兔对野外生存环境食物的适应机制,测定了塔里木兔和家兔胰腺及肠道的消化酶活性,包括淀粉酶(碘-淀粉比色法)、纤维素酶(3,5-二硝基水杨酸法)、脂肪酶(比浊法)及胰蛋白酶(紫外线吸收法)。用SPSS 15.0软件对实验数据进行统计学分析。采用one-way AVNOVA和多因素方差分析对比分析了塔里木兔和家兔消化酶活性。结果表明:1)塔里木兔肠道的淀粉酶活性明显高于家兔。其中,塔里木兔十二指肠、空肠及回肠的淀粉酶活性极显著高于家兔(P0.01)。淀粉酶活性在塔里木兔和家兔空肠最高。2)塔里木兔肠道的纤维素酶活性高于家兔。其中,塔里木兔盲肠的纤维素酶活性极显著高于家兔(P0.01),其回肠的纤维素酶活性显著高于家兔(P0.05)。纤维素酶活性在塔里木兔和家兔盲肠最高。3)家兔胰腺和肠道的脂肪酶活性明显高于塔里木兔。其中,家兔胰腺、十二指肠、空肠及回肠的脂肪酶活性显著高于塔里木兔(P0.05)。与消化道相比,脂肪酶活性在家兔和塔里木兔胰腺最高,肠道中空肠的脂肪酶活性最高。4)家兔胰腺和肠道的胰蛋白酶活性高于塔里木兔。其中,家兔空肠和十二指肠的胰蛋白酶活性显著高于塔里木兔(P0.05)。胰蛋白酶活性在家兔和塔里木兔空肠最高。可见,与家兔相比,塔里木兔对淀粉类、纤维类物质有较强的消化能力,对脂肪类的消化能力较弱。其中,淀粉酶活性和纤维素酶活性升高,脂肪酶活性和胰蛋白酶活性降低。这可能是塔里木兔适应贫瘠、匮乏的食物环境的重要原因之一。  相似文献   

10.
研究了不同温度下虎斑颈槽蛇胃、胰腺、小肠的蛋白酶、淀粉酶、脂肪酶的活性。结果表明,随着温度的升高,各种酶的活性在一定范围之内均表现为升高。在不同组织中同一种酶活性存在差异。3种组织中,蛋白酶的最适温度均为40℃;胃和胰腺淀粉酶的最适温度为35℃,小肠淀粉酶为30℃;胰腺脂肪酶的最适温度为30℃,小肠脂肪酶为35℃。  相似文献   

11.
本文采用酶学分析方法研究了云斑尖塘鳢在正常摄食状态与饥饿的状态下胃、肠及肝胰脏组织中蛋白酶、淀粉酶和脂肪酶的活性。结果显示,在30℃的条件下,正常摄食组样本在酸性条件下的蛋白酶活力表现为:胃后肠肝胰脏前肠,中性和碱性条件下:后肠肝胰脏前肠及胃;饥饿组样本仅有胃表现出较高的酸性蛋白酶活性,其他器官的蛋白酶活性均很低。在正常和饥饿实验组中肝胰脏的淀粉酶活性均高于其他器官,胃肠的淀粉酶活性均较低。正常摄食组中脂肪酶活力后肠肝胰脏;而在饥饿组中仅有肝胰脏检测到脂肪酶活性。结果表明,云斑尖塘鳢适度饥饿组较正常摄食组消化酶活性大幅降低;其高蛋白酶活力及中等脂肪酶活力与其肉食性相一致;此外云斑尖塘鳢也具备少量的淀粉消化能力。  相似文献   

12.
&#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2015,39(4):653-660
文章研究了不同盐度对花鳗鲡(Anguilla marmorata)幼鳗和太平洋双色鳗鲡(A. bicolor pacifica)幼鳗生长性能及消化酶活力的影响。将花鳗鲡幼鳗(9.760.36) g和太平洋双色鳗鲡幼鳗(11.820.04) g分别在淡水(盐度0)与盐度5、10、18水体中养殖30d, 测量每组实验鱼总重后检测胃、肠道和肝脏蛋白酶、淀粉酶和脂肪酶的活力。结果表明, 花鳗鲡和太平洋双色鳗鲡在各盐度处理中存活率均为100%, 未出现死亡。两种鳗鲡在淡水中生长良好, 特定生长率最高, 而饵料系数最低。盐度对花鳗鲡幼鳗和太平洋双色鳗鲡幼鳗消化酶活力的影响存在差异, 其中花鳗鲡胃、肠道和肝脏蛋白酶活力在各盐度处理中均无显著变化(P0.05), 淀粉酶和脂肪酶活力均随盐度的增加而下降; 太平洋双色鳗鲡胃蛋白酶活力在盐度10时最大, 肝蛋白酶活力在盐度18时最大, 而淀粉酶和脂肪酶活力在各盐度处理组无显著变化(P0.05)。这表明盐度对花鳗鲡胃、肠道和肝脏的淀粉酶和脂肪酶活力具有抑制作用, 对太平洋双色鳗鲡的蛋白酶活力有一定的激活作用。在相同盐度条件下, 不同消化器官中同种消化酶活力存在差异, 各盐度的两种鳗鲡肠道中淀粉酶和脂肪酶的活力均显著高于肝脏和胃(P0.05), 胃中蛋白酶活力高于肝脏和肠道, 但不显著(P0.05)。研究发现两种鳗鲡体内脂肪酶活力相对较高, 表明其对脂肪具有较强的消化能力。建议在配制花鳗鲡幼鳗和太平洋双色鳗鲡幼鳗饲料时, 适当提高粗脂肪比例, 有助于促进对营养物质的消化吸收, 提高养殖效益。    相似文献   

13.
以酶学分析方法研究了虎纹蛙消化道淀粉酶和脂肪酶的分布以及pH和温度对这两种消化酶活力的影响。结果表明:在各自生理pH值条件下,虎纹蛙消化道不同部位淀粉酶活力大小顺序依次为前肠〉中肠〉后肠〉食道〉胃,胃和肠淀粉酶最适pH值分别为8.6和7.0,最适温度分别为35℃和40℃。脂肪酶活力大小顺序依次为中肠〉后肠〉前肠〉胃〉食道,各部位之间差异显著(P〈0.05),胃和肠脂肪酶的最适pH值均为9.0,最适温度分别为50℃和55℃。  相似文献   

14.
罗明珠  章家恩  胡九龙  赵本良 《生态学报》2015,35(11):3580-3587
为比较福寿螺(Pomacea canaliculata(Lamarck,1828))和当地中国圆田螺(Cipangopaludina chinensis(Gray,1832))消化能力的差异,探索福寿螺成功入侵的机制,以田螺为对照,测定了1—4龄的福寿螺和田螺的胃和肝脏的消化酶——纤维素酶(羧甲基纤维素法)、淀粉酶(3,5-二硝基水杨酸法)和脂肪酶(滴定法)的活性。结果表明:1)相同年龄的福寿螺胃和肝脏中的消化酶活性明显高于田螺。其中,纤维素酶活性分别高出1.00—2.11倍、1.66—2.84倍;淀粉酶活性分别高出1.53—3.47倍、1.47—1.80倍;脂肪酶活性分别高出2.07—4.73倍、6.13—9.93倍。2)在生长发育过程中,福寿螺胃和肝脏中的消化酶活性变化幅度(51.2%—131.2%)明显高于田螺(23.3%—47.1%)。3)福寿螺的各种消化酶之间存在协同作用。如福寿螺的淀粉酶活性与脂肪酶活性呈极显著正相关(胃中r=0.736**、肝脏中r=0.867**)。此外,胃中的淀粉酶活性还与纤维素酶活性呈显著正相关关系(r=0.696*)。相应地,田螺胃中的淀粉酶和脂肪酶之间也存在显著的正相关关系(r=0.706*),而肝脏中的纤维素酶与脂肪酶活性呈显著负相关(r=-0.593*)。4)福寿螺对纤维素类和淀粉类物质都有较强的消化能力,且能较好地消化脂肪类物质,而田螺能消化纤维素类和淀粉类物质,对脂肪的消化能力却很弱。福寿螺的纤维素酶和淀粉酶活性分别是田螺的2.42和1.88倍,脂肪酶活性达到了5.66倍。可见,福寿螺具有较高的消化酶活性,且各消化酶之间存在正协同性。这可能是导致福寿螺食量大、食性杂,使其能快速生长和成功入侵的重要原因之一。  相似文献   

15.
Changes in major digestive enzymes through developmental and molt stages were studied for the spiny lobster Panulirus argus. There were significant positive relationships between specific activity of trypsin and amylase enzymes and lobster size, whereas esterase and lipase specific activities decreased as lobsters aged. No relationship was found between amylase/trypsin ratio and lobster size. Positive trends were found, however, for trypsin/lipase and amylase/lipase ratios. Results suggest that changes in enzyme activity respond to the lobsters' physiological needs for particular dietary components although multivariate analysis suggested that enzyme activities could be not totally independent of diet. On the other hand, the pattern of changes of major enzyme activities through molt cycle was similar for most enzymes studied. Following molt, trypsin, chymotrypsin, amylase, and lipase activities gradually increased to maximal levels at late intermolt (C4) and premolt (D). There were no variations in the electrophoretic pattern of digestive enzymes through developmental and molt stages and thus, it is demonstrated that regulation is exerted quantitatively rather than qualitatively. Further studies on the effect of other intrinsic and extrinsic factors on digestive enzyme activities are needed to fully understand digestive abilities and regulation mechanisms in spiny lobsters.  相似文献   

16.
pH值对中国龙虾消化酶活力的影响   总被引:2,自引:0,他引:2  
姜永华  颜素芬 《动物学报》2008,54(2):317-322
采用酶学分析方法研究了pH对中国龙虾胃蛋白酶、类胰蛋白酶、淀粉酶、纤维素酶和脂肪酶活力的影响。结果表明,在设定的pH范围内,中国龙虾各消化酶的活力均随着pH的升高呈现先升后降的变化趋势。其中,胃、肠、肝胰腺内胃蛋白酶最适pH均为2.2,类胰蛋白酶最适pH分别为8.8-9.2、8.4、8.8,淀粉酶最适pH分别为7.0、7.0、7.4,纤维素酶最适pH分别为4.2、4.2-4.6、5.4,脂肪酶最适pH分别为7.2-7.6、7.2、6.8-7.2。同时测得中国龙虾胃、肠、肝胰腺内的生理pH分别为5.33、6.93、6.60。中国龙虾的消化酶活力存在器官特异性。在最适pH下,胃蛋白酶活力顺序为胃>肠>肝胰腺,类胰蛋白酶、纤维素酶、脂肪酶的活力顺序均为肝胰腺>肠>胃,淀粉酶的活力顺序为肠>肝胰腺>胃。  相似文献   

17.
Digestive enzyme responsiveness to feeding and associated adjustments of metabolism can be used to derive nutritionally effective diet formulations. Juvenile pintado (Pseudoplatystoma corruscans) were fed different diets. After feeding, fish were killed and blood, liver and white muscle were collected to evaluate metabolites. Stomach along with anterior, middle and posterior intestine were sampled for enzyme analysis. Non-specific protease, trypsin, chymotrypsin, amylase and lipase were assayed. Crude protein (CP) did not induce proteolytic activity; highest protease activities were observed in the stomach. Amylase was higher in the stomach in fish feeding on diets containing 13-25% starch. Lipase activity was observed along the gastrointestinal tract, with the highest activities observed in the middle section. The metabolic profile of white muscle was not affected by CP. In contrast, some plasma and liver metabolites were altered concomitant with changes in the digestive enzymes. Amino acid catabolism was increased. Digestion in pintado was responsive to cornstarch, reflected in intermediary metabolism; proteolytic activities of the digestive tract seem to be sufficient to deal with large amounts of dietary protein. As a result, we are able to recommend a balance between protein and energetic compounds, such as lipids and carbohydrates, in the diet to optimize fish growth.  相似文献   

18.
中华真地鳖中肠主要消化酶的活性研究   总被引:7,自引:0,他引:7  
以中华真地鳖EupolyphagasinensisWalker为研究材料,测定人工饲养和野生地鳖虫在不同生长阶段消化酶的活性以及温度及pH对人工饲养地鳖虫中肠消化酶活性的影响。结果表明,在地鳖虫生长发育过程中,蛋白酶和脂肪酶活性随发育而逐渐增强,淀粉酶活性却随发育而逐渐减弱。在低龄若虫、高龄若虫和成虫阶段,人工饲养地鳖虫蛋白酶活力比野生地鳖虫低,人工饲养地鳖虫淀粉酶和脂肪酶活力比野生地鳖虫高;在30~60℃的范围内,人工饲养地鳖虫蛋白酶、淀粉酶的适宜温度范围为40~50℃,脂肪酶的适宜温度范围为35~45℃;蛋白酶、淀粉酶和脂肪酶的适宜pH范围分别为6.5~7.5,5.6~6.4和7.5~8.5。  相似文献   

19.
We characterized major digestive enzymes in Panulirus argus using a combination of biochemical assays and substrate-(SDS or native)-PAGE. Protease and amylase activities were found in the gastric juice while esterase and lipase activities were higher in the digestive gland. Trypsin-like activity was higher than chymotrypsin-like activity in the gastric juice and digestive gland. Stability and optimal conditions for digestive enzyme activities were examined under different pHs, temperature and ionic strength. The use of protease inhibitors showed the prevalence of serine proteases and metalloproteases. Results for serine proteases were corroborated by zymograms where several isotrypsins-like (17-21 kDa) and isochymotrypsin-like enzymes (23-38 kDa) were identified. Amylases (38-47 kDa) were detected in zymograms and a complex array of non-specific esterases isoenzymes was found in the digestive gland. Isoenzyme polymorphism was found for trypsin, amylase, and esterase. This study is the first to evidence the biochemical bases of the plasticity in feeding habits of P. argus. Distribution and properties of enzymes provided some indication on how the digestion takes place and constitute baseline data for further studies on the digestion physiology of spiny lobsters.  相似文献   

20.
To understand how ambient temperature affect the gypsy moth larvae, and provide a theoretical basis for pest control in different environments. Fourth instar gypsy moth larvae were incubating for 3 hr at 15℃, 20℃, 25℃, 30℃, 35℃, and 40℃, respectively. Afterward, digestive and antioxidant enzyme activities, total antioxidant capacity, and intestinal microflora community were analyzed to reveal how the caterpillars respond to ambient temperature stress. Results showed that both digestive and antioxidant enzymes were regulated by the ambient temperature. The optimum incubation temperatures of protease, amylase, trehalase, and lipase in gypsy moth larvae were 30℃, 25℃, and 20℃, respectively. When the incubation temperature was deviated optimum temperatures, digestive enzyme activities would be downregulated depending on the extent of temperature stress. In addition, glutathione S‐transferase, peroxidase, catalase, and polyphenol oxidase would be activated under a sufferable temperature stress, but superoxide dismutase and carboxylesterase (CarE) would be inhibited. In addition, results showed that the top two abundant phyla were Proteobacteria and Firmicutes. The phylum Firmicutes abundance was decreased and phylum Proteobacteria abundance was increased by ambient temperature stress. Moreover, it suggested that gypsy moth caterpillars at different ambient temperature mainly differed from each other by Escherichia‐Shigella and Bifidobacterium in control, Acinetobacter in T15, and Lactobacillus in T40, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号