首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
作为胚胎冷冻保存的基础性研究,冷冻保护剂的渗透性和毒性研究非常重要.本试验选用1,2-丙二醇、甘油、乙二醇和二甲基亚砜4种常用冷冻保护剂,对小鼠2-细胞胚胎进行渗透性和毒性研究.结果显示:1.5 mol/L的1,2-丙二醇、乙二醇和二甲基亚砜冷冻保护剂对2-细胞胚胎的渗透性显著高于甘油保护剂;4种冷冻保护剂对细胞膜的完整性没有影响;1.5 mol/L的乙二醇、1,2-丙二醇和甘油保护剂处理后的2-细胞胚胎的囊胚发育率和孵化率与对照组胚胎比较差异不显著(P>0.05),但显著高于二甲基亚砜处理后的2-细胞囊胚发育率和孵化率(P<0.01).结果表明:在4种冷冻保护剂中,乙二醇和1,2-丙二醇适合于小鼠2-细胞胚胎冷冻保存  相似文献   

2.
2008年3月1日至4月27日和2009年3月3日至5月1日,在陕西省珍稀野生动物抢救饲养研究中心对处于繁殖期内的4只雄性秦岭大熊猫(Ailuropoda melanoleuca qinlingensis)精液进行了细管冻精实验。比较组成不同的4种稀释液:葡萄糖-果糖-柠檬酸三钠-卵黄-甘油-双抗(稀释液1)、葡萄糖-蔗糖-柠檬酸三钠-卵黄-甘油-双抗(稀释液2)、葡萄糖-柠檬酸三钠-卵黄-甘油-双抗(稀释液3)和美国进口的TEST(加入3.5%甘油),以及直接降温平衡法(方法 1)与逐级降温平衡法(方法 2)2种冷冻保存操作方法,对秦岭大熊猫精液进行细管冷冻保存后精子活力和顶体完整率的影响。结果表明:稀释液1的精子活力为46.25%±11.67%,顶体完整率为80.75%±7.89%,TEST的精子活力为48.75%±8.54%,顶体完整率为84.50%±7.59%,两者的精子活力和顶体完整率均无明显差异(P0.05),但是都明显高于稀释液2(P﹤0.01)和稀释液3(P﹤0.01);采用方法 1冷冻保存秦岭大熊猫精液,解冻后精子的活力和顶体完整率分别为45.67%±10.54%和81.37%±8.42%,都显著高于方法 2(P﹤0.01);方法 1解冻后畸形率为23.50%±3.51%,明显低于方法 2(P﹤0.01)。经比较确定,方法 1(用稀释液1)是一种较好的细管冷冻保存秦岭大熊猫精液的方法。  相似文献   

3.
不同渗透压的稀释液对猕猴精子低温冷冻保存的影响   总被引:3,自引:0,他引:3  
以稀释液TTE(382mOsm/kg)为对照,研究了5种渗透压(688、389、329、166、43mOsm/kg)的TEST稀释液(TEST、mTEST1、mTEST2、mTEST3、mTEST4)在冷冻过程中对猕猴精子功能的影响。精液一步稀释于含甘油的防冻液中,甘油的终浓度为5%(v/v)。在冷冻前后分别检测精子的运动度和质膜完整性,后者用Hoechst33342和碘化丙锭双色标记流式细胞术分析。结果表明:冷冻之前,与鲜精相比,用TEST和mTEST4稀释的精子运动度和质膜完整性显著降低(P<0·001),其余组中除mTEST2稀释的精子质膜完整性显著降低(P<0·05)外,精子运动度无差异;冷冻复苏后,TTE、mTEST3和mTEST1冻存精子的运动度和质膜完整性最高,其次是mTEST2,TEST和mTEST4冷冻效果最差(P<0·05)。提示等渗、适当高渗或低渗的稀释液适合猕猴精子的冷冻保存;对精子产生高渗毒害作用是导致猕猴精子用TEST冷冻存活率低的主要原因。  相似文献   

4.
人工采取8只优质芬兰雄性蓝狐的精液,分别利用2%、4%、6%和8%甘油浓度的卵黄-Tris-果糖-柠檬酸钠稀释液进行稀释,制成细管冻精。在冻融后0、O.5、2、4、6h检测4种浓度组的精子运动度、质膜完整率、顶体完整率;并利用透射电镜观察冻融前后精子的超微结构变化。冻融后0h,4%甘油浓度组冻融精子的运动度、质膜完整率、顶体的完整率均最高(分别为41.8%、43.6%、48.4%),2%浓度组最低(分别为24.5%、27.6%、31.7%);随着检测时间延长,2%与4%组的精子特性差异显著,但2%、6%、8%3个组间差异不显著;6h时各组间精子的运动度均不超过10%,最高质膜完整率和顶体完整率分别为11.8%、12.7%。说明蓝狐精液稀释剂中甘油的适宜浓度应为4%,冻融后精子的活力维持时间较短。蓝狐精子冻融过程中质膜极易发生膨胀或断裂、顶体囊泡化或溃散,而质膜和顶体丢失现象较少。  相似文献   

5.
为了解乙二醇(EG)为抗冻剂超低温冻存黄姑鱼(Nibea albiflora)精子的活力及DNA损伤情况,本研究以Hank′s盐溶液(HBSS)为稀释液,5%~30%乙二醇(EG)为抗冻剂,0.5 ml麦细管为冻存管,两步降温法超低温冷冻保存黄姑鱼精子,用显微观察法测定精子活力,用单细胞凝胶电泳技术(SCGE)检测精子的DNA损伤,用SPSS 11.5处理实验数据。黄姑鱼鲜精的激活率为85.67%±2.09%、运动时间为(318.67±6.11)s、寿命为(405.67±7.77)s。5%、10%、15%乙二醇(EG)组冻精的运动时间及寿命与鲜精相比差异不显著,其中10%乙二醇(EG)组冻精的激活率为84.67%±1.15%、运动时间为(319.00±12.12)s、寿命为(400.67±4.73)s;20%、25%、30%乙二醇(EG)组冻精的运动时间及寿命与鲜精相比差异显著。5%、10%、15%、20%乙二醇(EG)组冻精核DNA损伤状况与鲜精无显著差异,25%、30%乙二醇(EG)组冻精核DNA损伤状况与鲜精差异显著,且冻精核DNA的损伤程度与乙二醇(EG)浓度成正相关。分析认为,5%~15%乙二醇(EG)适宜作为黄姑鱼精子超低温冷冻保存用抗冻剂。  相似文献   

6.
冷冻保护剂及预冷时间对河蟹精子体外冷冻保存的影响   总被引:2,自引:2,他引:0  
本文以甘油、二甲亚砜(DMSO)为冷冻保护剂,采用两步降温法,以精子存活率和DNA损伤程度为检验其冷冻效果的评价指标,研究了冷冻保护剂和预冷时间对河蟹Eriocheir sinensis精子冷冻保存效果的影响。胰蛋白酶消化法获得河蟹游离精子,液氮冷冻保存8h以上,精子保存密度为10^7个/mL,伊红染色法检测精子存活率,单细胞凝胶电泳(SCGE)检测精子DNA损伤。实验共设置10个组,分别为不同浓度的单一冷冻保护剂(每种保护剂的体积百分比分别为5%、10%、12.5%、15%)和两种保护剂组合(两种保护剂在同一实验组巾的体积百分比含量均为5%、10%)。结果显示,12.5%甘油的保存效果最佳,精子存活率达到62.60%。在此基础上,以10%甘油作为冷冻保护剂,设置5、10、20、30、40min5个时间梯度,研究了预冷时间对精子冷冻保存效果的影响。结果显示预冷时间的长短对精子冷冻保存效果的影响显著,当预冷时间低于20min时,精子大量死亡,且精子DNA严重损伤;当预玲时间超过30min时,精子存活率明显提高,精子DNA损伤明显减弱。  相似文献   

7.
为了找到适合珍稀鱼类胭脂鱼的物种保存方法,本研究比较了不同的稀释液(D-17, D-20, Ringer液和Kurokura-1)以及不同的稀释比例(1∶2, 1∶3, 1∶6)、不同的抗冻剂(二甲亚砜,甘油和甲醇)以及不同的添加浓度(8%, 10%, 12%)对胭脂鱼精子超低温冷冻保存效果,结果显示:稀释液D-17、D-20保存效果显著优于Ringer液、Kurokura-1 (p0.05);D-17稀释液的最佳的稀释倍数为1∶3,D-20稀释液的最适稀释比例为1∶3或1∶6;冷冻保存107 d后,D-20 (1∶6)配方的激活率最高,达(81.67±2.89)%;抗冻剂二甲亚砜保存效果显著优于甘油和甲醇(p0.05),二甲亚砜的最适添加浓度为8%。同时测定了添加D-17 (1∶3)抗冻液、Ringer液(1∶3)抗冻液和未添加抗冻液冻存样本精浆中酶活力,结果显示未添加抗冻液精浆中ATPase、SDH、LDH、CK、GOT活性均高于添加抗冻液的样品;添加抗冻液D-17 (1∶3)的样品精浆中ATPase、SDH、CK、GOT的含量低于冻存相同天数的Ringer液(1∶3)样品;精浆中ATPase、SDH、LDH、CK、GOT含量随冻存时间的延长呈上升趋势。本研究为保护淡水珍稀鱼类胭脂鱼的种质资源提供了理论基础。  相似文献   

8.
目的比较不同冷冻保护剂和冷冻程序对兔精子冷冻保护的影响,以期提高兔精子冷冻保存的效果和效率。方法用三步降温法(程序Ⅰ)和两步降温法(程序Ⅱ)两种冷冻程序与终浓度分别为2%,3%,4%,5%的甘油和乙酰胺两种冷冻保护剂配合进行精液冷冻保存,统计精子复苏率。结果使用程序Ⅱ添加3%乙酰胺的冷冻保护剂实验组的精子复苏率较高,同其它组比较差异有显著性意义(P〈0.05);程序Ⅱ比程序Ⅰ节省约70%的时间,同种浓度冷冻保护剂的不同冷冻程序组之间精子复苏率差异无显著性意义(P〉0.05)。结论程序Ⅱ与3%乙酰胺配合可以取得良好的冷冻保存效果;用程序Ⅱ进行兔精液冷冻保存可以大幅缩短操作时间。  相似文献   

9.
为研究苯系物暴露对工人精子染色体的损伤 ,用 4条DNA探针与间期精子核染色体进行多色荧光原位杂交 ,同时检测精子 1号、18号染色体数目畸变和 1号染色体结构畸变 (末端缺失与重复 )。作业车间空气中苯的时间加权浓度 (TWA)为 4 2 2 9mg m3,高于国家卫生标准 (6mg m3)。暴露组工人尿粘糠酸 (ttMA)高于对照组。共计数15例暴露组工人 14 4 2 82条精子 ,14例对照组工人 135 937条精子 ,杂交效率为 99 85 %。非整倍体测定结果 :暴露组精子 1号、18号染色体双体率 (分别为 0 0 88%± 0 0 4 1% ,0 0 87%± 0 0 4 9% )显著高于对照组 1号、18号双体率(0 0 4 5 %± 0 0 2 4 % ,0 0 5 3%± 0 0 2 8% ) ;暴露组 1号、18号染色体缺体率分别为 (0 11%± 0 0 5 9% ,0 0 75 %±0 0 35 % )显著高于对照组相应数值 (0 0 4 8%± 0 0 18% ,0 0 4 5 %± 0 0 2 4 % ) ;而二倍体精子率 ,两组差别无显著性。结构畸变测定结果 :暴露组 1号染色体的末端重复率、末端缺失率 (分别为 0 16 %± 0 0 37% ,0 14 %± 0 0 5 3% )显著高于对照组数值 (分别为 0 0 82 %± 0 0 2 3% ,0 0 6 9%± 0 0 2 8% ) ;暴露组 1号染色体着丝粒重复率及着丝粒缺失率(0 10 %± 0 0 35 % ,0 10 %± 0 0 4 1% )显著性高于对  相似文献   

10.
目的建立滇南小耳猪精液冷冻保存方法,加速云南省特有小型猪种的小型化选育。方法利用脉冲电刺激模式诱导公猪输精管自助收缩排精。利用直接冷冻新技术(DFM)研究不同冷冻方案对精子的运动度、精子顶体完整性和体内授精胚胎发育能力的影响。结果在直接冷冻方法中,3%甘油防冻剂的作用下,60 s植冰时间和1.5 mm/s的冷冻降温参数对精子运动度保护良好,精子运动复苏率达到61.7%。但是,3%乙二醇虽然与甘油一样对精子的顶体完整性都有很好的保护作用,对精子运动度保护能力较差。此外,3%甘油、60 s植冰、1.5mm/s冷冻速度的直接冷冻的冻精解冻,移植到超数排卵的母猪子宫颈口实施人工授精,获得卵的受精和胚胎发育潜能尚可。结论玻璃管直接冷冻可以完成滇南小耳猪精子的冷冻保存。  相似文献   

11.
Glycerol and dimethyl sulfoxide (DMSO) are widely used as penetrating cryoprotectants in the freezing of sperm, and various concentrations are applied in different species and laboratories. The present study aimed to examine the effect of these two cryoprotectants at different concentrations (2%, 5%, 10%, and 15% glycerol or DMSO) on rhesus monkey sperm cryopreservation. The results showed that the highest recovery of post-thaw sperm motility, and plasma membrane and acrosome integrity was achieved when the sperm was frozen with 5% glycerol. Spermatozoa cryopreserved with 15% DMSO showed the lowest post-thaw sperm motility, and spermatozoa cryopreserved with 15% glycerol and 15% DMSO showed the lowest plasma membrane integrity among the eight groups. The results achieved with 5% glycerol were significantly better for all parameters than those obtained with 5% DMSO. The functional cryosurvival of sperm frozen with 5% glycerol was further assessed by in vitro fertilization (IVF). Overall, 85.7% of the oocytes were successfully fertilized, and 51.4% and 5.7% of the resulting zygotes developed into morulae and blastocysts, respectively. The results indicate that the type and concentration of the penetrating cryoprotectant used can greatly affect the survival of rhesus monkey sperm after it is frozen and thawed. The suitable glycerol level for rhesus monkey sperm freezing is 5%, and DMSO is not suitable for rhesus monkey sperm cryopreservation.  相似文献   

12.
Biophysical characteristics of the plasma membrane, such as osmotic sensitivity and water and cryoprotectant permeability are important determinants of the function of spermatozoa after cryopreservation. A series of experiments was conducted with rhesus macaque spermatozoa at 23 degrees C to determine their: (1) cell volume and osmotically inactive fraction of the cell volume; (2) permeability coefficients for water and the cryoprotectants dimethyl sulfoxide, glycerol, propylene glycol, and ethylene glycol; (3) tolerance to anisosmotic conditions; and (4) motility after a one step addition and removal of the four cryoprotectants. An electronic particle counter and computer aided semen analysis were used to determine the cell volume and permeability coefficients, and motility, respectively. Rhesus spermatozoa isosmotic cell volume was 27.7+/-3.0 microm3 (mean+/-SEM) with an osmotically inactive cell fraction of 51%. Hydraulic conductivity in the presence of dimethyl sulfoxide, glycerol, propylene glycol, and ethylene glycol was 1.09+/-0.30, 0.912+/-0.27, 1.53+/-0.53, and 1.94+/-0.47 microm/min/atm, respectively. Cryoprotectant permeability was 1.39+/-0.31, 2.21+/-0.32, 3.38+/-0.63, and 6.07+/-1.1 (x10(-3)cm/min), respectively. Rhesus sperm tolerated all hyposmotic exposures. However, greater than 70% motility loss was observed after exposure to solutions of 600 mOsm and higher. A one step addition and removal of all four cryoprotectants did not cause significant motility loss. These data suggest that rhesus sperm are tolerant to hyposmotic conditions, and ethylene glycol may be the most appropriate cryoprotectant for rhesus sperm cryopreservation, as it has the highest permeability coefficient of the tested cryoprotectants.  相似文献   

13.
《Cryobiology》2016,72(3):442-447
We verify the effects of different cryoprotectants on the cryopreservation of agouti (Dasyprocta leporina) epididymal sperm. We used 16 pairs of testes–epididymis complexes of sexually mature animals. We immediately evaluated epididymal sperm obtained by retrograde flushing for concentration, motility, vigor, viability, osmotic response, and morphology. Samples were extended in a coconut water extender plus 20% egg yolk, containing glycerol, ethylene glycol, dimethylsulfoxide – DMSO, or dimethylformamide. Finally, samples were stored in 0.25 mL straws, frozen in liquid nitrogen, and thawed after one week, being reevaluated and assessed for membrane integrity using fluorescent probes. The higher values for postthawing sperm motility, vigor, and membrane integrity were achieved by the usage of glycerol, when compared to ethylene glycol and dimethylformamide (P < 0.05); however, no differences were found between glycerol and DMSO (P > 0.05). All cryoprotectants provided a similar effect on the preservation of sperm morphology, osmotic response, and viability (P > 0.05). Therefore, here onwards, there was testing of glycerol and DMSO at 3 and 6% concentrations using the same freezing–thawing protocol reported previously. As the main result, DMSO at 6% concentration provided a decrease in sperm parameters, as well as in the chromatin integrity and in the binding capability of sperm. In conclusion, glycerol 3 or 6% and DMSO 3% can be used as alternative cryoprotectants for agouti epididymal sperm cryopreservation.  相似文献   

14.
Si W  Benson JD  Men H  Critser JK 《Cryobiology》2006,53(3):336-348
Osmotic stress is an important factor that can result in cell damage during cryopreservation. The objectives of this study were to determine: (1) isosmotic sperm cell volume; (2) osmotically inactive volume; (3) osmotic tolerance limits of rat sperm; and (4) the effects of addition and removal of glycerol (Gly), ethylene glycol (EG), propylene glycol (PG) or dimethyl sulfoxide (Me(2)SO) on rat sperm function. Sperm from Fischer 344 and Sprague-Dawley rats were used in this study. An electronic particle counter was used to measure the cell volume of rat sperm. Computer-assisted sperm motility analysis and flow-cytometric analysis were used to assess sperm motility, plasma membrane and acrosomal integrity. The isosmotic sperm cell volumes of the two strains were 37.0+/-0.1 and 36.2+/-0.2 microm(3), respectively. Rat sperm behaved as linear osmometers from 260 to 450 mOsm, and the osmotically inactive sperm volumes of the two strains were 79.8+/-1.5% and 81.4+/-2.2%, respectively. Rat sperm have very limited osmotic tolerances. The sperm motility and the sperm plasma membranes of both strains were sensitive to anisosmotic treatments, but the acrosomes of both strains were more sensitive to hyposmotic than hyperosmotic conditions. The one-step addition and removal of Me(2)SO showed the most deleterious effect on rat sperm motility, plasma membrane integrity, and acrosomal integrity among the four cryoprotectants. These data characterizing rat sperm osmotic behavior, osmotic and cryoprotectant tolerance will be used to design cryopreservation protocols for rat sperm.  相似文献   

15.
The aim was to assess the in vitro effect of glycerol, ethylene glycol or acetamide on frozen-thawed ram spermatozoa. Aliquots of each sixteen ejaculates from four rams of the Morada Nova breed were diluted in Tris-egg yolk with glycerol (5%), ethylene glycol (3% or 5%) or acetamide (3% or 5%) and frozen at -196°C. After thawing, progressive sperm motility was greater (P<0.05) in cryopreservation with glycerol 5% and ethylene glycol (3% or 5%) than with acetamide (3% or 5%). Acrosome integrity was greater (P<0.05) with ethylene glycol 5% than acetamide (3% or 5%). The percentage of sperm without oxidative stress was greater (P<0.05) with ethylene glycol (3% or 5%) than with acetamide (3% or 5%). Plasma membrane integrity was greater with glycerol 5% (P<0.05) than with the other cryoprotectants. Thus, it is concluded that glycerol 5% and ethylene glycol 3% or 5% protect ram sperm against the harmful effects of freezing and that glycerol 5% offers greater protection to sperm plasma membrane.  相似文献   

16.
Research into an optimal cryoprotectant, its concentration and equilibration time underlies the successful cryopreservation of dromedary camel spermatozoa. This study assessed the cryo-efficiency of different cryoprotectants, their concentration and equilibration time and any interactions. In experiment 1, semen samples (n = 4 males; 2 ejaculates/male) were frozen using Green Buffer containing one of four cryoprotectants (3% glycerol, ethylene glycol, methyl formamide, dimethyl sulfoxide) and using 4 equilibration times (10 min, 0.5, 1 and 2 h). Glycerol and ethylene glycol provided the best motility recovery rates and different equilibration times were not significant for any cryoprotectant nor were any interactions noted. However different equilibration times were pertinent for improved kinematic parameters BCF and VSL. In experiment 2, glycerol and ethylene glycol were evaluated at 4 concentrations (1.5, 3, 6, 9%) with 0.5 h equilibration (n = 4 males, 3 ejaculates/male). Sperm motility recoveries, kinematics and acrosome status were assessed. Higher values for LIN and STR were found with ethylene glycol. At 0 and 1 h post thaw 3 and 6% of either cryoprotectant resulted in better motility values than 1.5%. Acrosome integrity was compromised at 9% cryoprotectant. There were interactions between cryoprotectant and concentration in total motility at 0 and 1 h. For glycerol, total motility recoveries were best at 3–9%; for ethylene glycol 1.5–6% were best at 0 h and 3–6% at 1 h. In conclusion, 3–6% glycerol or ethylene glycol offered the best cryoprotection for camel sperm while different equilibration times were not critical.  相似文献   

17.
The present study was performed to develop a suitable cryoprotectant solution for cryopreservation of rat two-cell stage embryos. First, we examined the cell permeability of several cryoprotectants; propylene glycol had the fastest permeability compared to dimethyl sulfoxide, ethylene glycol, and glycerol. Embryos were then exposed to a solution containing propylene glycol to evaluate its effects on fetal development. As the development was similar to that of fresh embryos, P10 (10% v/v propylene glycol in PB1) was used as a pretreatment solution. Next, the effects of the vitrification solution components (sucrose, propylene glycol, ethylene glycol, and Percoll) were examined by observing the vitrification status; 10% v/v propylene glycol, 30% v/v ethylene glycol, 0.3 mol sucrose, and 20% v/v Percoll in PB1 (PEPeS) was the minimum essential concentration for effective vitrification without the formation of ice crystals or freeze fractures.  相似文献   

18.
This study aimed to improve a sperm cryopreservation protocol for farmed Pacific abalone, Haliotis discus hannai. Dimethyl sulfoxide (Me2SO), glycerol, ethylene glycol (EG), propylene glycol (PG), and methanol were chosen as cryoprotectants (CPAs). Four different equilibration time (5, 10, 30, and 60 min), and two types of equilibration temperature (4 °C and 20 °C) were selected at the present experiment. Most equilibration temperatures with each CPA showed significant differences among different equilibration time. Post-thaw sperm motility of five CPAs showed no significant difference at two equilibration temperature. Based on these results, 8% Me2SO, 8% EG, 6% PG, 2% glycerol, and 2% methanol were chosen to determine optimal conditions for sperm cryopreservation of H. discus hannai. The highest post-thaw sperm motility (8% Me2SO: 50.6%, 8% EG: 45.6%, 2% glycerol: 44.5%, 6% PG: 28.7%, 2% methanol: 25.4%) was achieved after exposing sperm to liquid nitrogen (LN2) vapor for 10 min at 5 cm above the LN2 surface and then submerging them in LN2 for at least 2 h followed by thawing at 60 °C with seawater and recovering them at 20 °C with seawater. In this study, 8% Me2SO and 2% glycerol were chosen to check post-thaw sperm quality to estimate percentages of plasma membrane integrity (PMI), mitochondrial potential analysis (MP), and acrosome integrity (AI) using fluorescent techniques. No significant difference in PMI, MP, and AI was found between sperm cryopreserved with 8% Me2SO and those cryopreserved with 2% glycerol. The current study has demonstrated that 8% Me2SO was optimal for sperm cryopreservation for H. discus hannai with 5 min of equilibration time, 5 cm of rack height and 60 °C of thawing temperature. The present research provides more effective cryopreservation methods for H. discus hannai sperm than previous studies.  相似文献   

19.
Low survival of cryopreserved sperm impedes the application of cryopreservation technique in spermcasting oyster species. This study developed a simple method of liquid nitrogen vapor freezing to improve post-thaw sperm survival in the spermcasting oyster Ostrea angasi. The results indicate that the permeable cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG) and propylene glycol (PG) were non-toxic to sperm up to 20% concentration and 90 min exposure whereas methanol at 10% or higher was toxic to sperm for any exposure over 30 min. Among the treatments with permeable cryoprotectants, 15% EG produced the highest post-thaw sperm motility. Sperm motility was further improved by the addition of non-permeable cryoprotectants (trehalose and glucose), with 15% EG + 0.2 M trehalose resulting in the highest post-thaw sperm motility among all the combinations evaluated. The durations of 20, 30 and 60 min equilibrations produced a higher post-thaw sperm motility and plasma membrane integrity (PMI) than 10 min. Higher post-thaw motility and PMI were achieved by freezing sperm at the 8 cm height from the liquid nitrogen surface than at the 2, 4, 6, 10 or 12 cm height. Holding sperm for 10 min in liquid nitrogen vapor produced higher post-thaw motility and PMI than for 2, 5 or 20 min. The cryopreservation protocol developed in this study improved both post-thaw motility and PMI of O. angasi sperm at least 15% higher than those cryopreserved using programmable freezing method. Liquid nitrogen vapor freezing might have greater applicability in improving post-thaw sperm quality of spermcasting oyster species.  相似文献   

20.
Glycerol may be toxic to frozen-thawed ram spermatozoa and reduce their fertilizing capacity. This study examined the cryoprotective effects of dimethyl sulphoxide (DMSO), ethylene glycol, glycerol and propanediol alone and in combinations with each other in Triscitrate-glucose diluents on the post-thaw motility and acrosome integrity of pellet-frozen ram spermatozoa. The 4 cryoprotectants were examined in diluents at 5 concentrations (0, 1.5, 3.0, 6.0, 12.0% v/v). Post-thaw motility of spermatozoa was higher in diluents containing ethylene glycol (1.5 to 6.0% v/v), glycerol (at all levels tested) and propanediol (1.5 and 3.0% v/v) than in diluents without cryoprotectant (P<0.001), but there was no effect of DMSO on post-thaw motility. Motility of spermatozoa was higher in diluents containing ethylene glycol or glycerol than DMSO or propanediol (P<0.001). In diluents containing the 4 cryoprotectants at 3 concentrations (1.5, 3.0, 6.0% v/v), better recovery of spermatozoa was found with the addition of 18.0 than 4.5% v/v egg yolk. Combinations of ethylene glycol and/or propanediol (0 to 6.0% v/v) with glycerol (0 to 6.0% v/v) in diluents were also examined. In the presence of glycerol at all levels tested, increasing levels of ethylene glycol and/or propanediol decreased motility and acrosome integrity of spermatozoa (P<0.001). We conclude that the compounds examined exert a cryoprotective effect on pellet-frozen ram spermatozoa, except for DMSO which had no effect. In this study, glycerol remained the single most effective cryoprotectant, and there was no enhancement of this cryoprotection by addition of the other compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号