首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well‐defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.  相似文献   

2.
Cellular senescence is an irreversible cell cycle arrest program in response to various exogenous and endogenous stimuli like telomere dysfunction and DNA damage.It has been widely accepted as an antitumor program and is also found closely related to embryo development,tissue repair,organismal aging and age-related degenerative diseases.In the past decades,numerous efforts have been made to uncover the gene regulatory mechanisms of cellular senescence.There is a strong demand to integrate these data from various resources into one open platform.To facilitate researchers on cellular senescence,we have developed Human Cellular Senescence Gene Database(HCSGD) by integrating multiple online published data sources into a comprehensive senescence gene annotation platform(http://bioinfo.au.tsinghua.edu.cn/member/xwwang/HCSGD).Potential Human Cellular Senescence Genes(HCSGS)were collected by combining information from published literatures,gene expression profiling data and Protein-Protein Interaction networks.Additionally,genes are annotated with gene ontology annotation and microRNA/drug/compound target information.HCSGD provides a valuable resource to visualize cellular senescence gene networks,browse annotated functional information,and retrieve senescenceassociated genes with a user-friendly web interface.  相似文献   

3.
Senescence is a tumor suppressor program characterized by a stable growth arrest while maintaining cell viability. Senescence-associated ribogenesis defects (SARD) have been shown to regulate senescence through the ability of the ribosomal protein S14 (RPS14 or uS11) to bind and inhibit the cyclin-dependent kinase 4 (CDK4). Here we report another ribosomal protein that binds and inhibits CDK4 in senescent cells: L22 (RPL22 or eL22). Enforcing the expression of RPL22/eL22 is sufficient to induce an RB and p53-dependent cellular senescent phenotype in human fibroblasts. Mechanistically, RPL22/eL22 can interact with and inhibit CDK4-Cyclin D1 to decrease RB phosphorylation both in vitro and in cells. Briefly, we show that ribosome-free RPL22/eL22 causes a cell cycle arrest which could be relevant during situations of nucleolar stress such as cellular senescence or the response to cancer chemotherapy.  相似文献   

4.
Replicative senescence has a major impact on function and integrity of cell preparations. This process is reflected by continuous DNA methylation (DNAm) changes at specific CpG dinucleotides in the course of in vitro culture, and such modifications can be used to estimate the state of cellular senescence for quality control of cell preparations. Still, it is unclear how senescence‐associated DNAm changes are regulated and whether they occur simultaneously across a cell population. In this study, we analyzed global DNAm profiles of human mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) to demonstrate that senescence‐associated DNAm changes are overall similar in these different cell types. Subsequently, an Epigenetic‐Senescence‐Signature, based on six CpGs, was either analyzed by pyrosequencing or by bar‐coded bisulfite amplicon sequencing. There was a good correlation between predicted and real passage numbers in bulk populations of MSCs (R2 = 0.67) and HUVECs (R2 = 0.97). However, when we analyzed the Epigenetic‐Senescence‐Signature in subclones of MSCs, the predictions revealed high variation and they were not related to the adipogenic or osteogenic differentiation potential of the subclones. Notably, in clonally derived subpopulations, the DNAm levels of neighboring CpGs differed extensively, indicating that these genomic regions are not synchronously modified during senescence. Taken together, senescence‐associated DNAm changes occur in a highly reproducible manner, but they are not synchronously co‐regulated. They rather appear to be acquired stochastically—potentially evoked by other epigenetic modifications.  相似文献   

5.
Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.  相似文献   

6.
Summary: Senescence‐associated β‐galactosidase (SA‐β‐gal) activity is widely used as a marker of cellular senescence and as an indicator of organismal aging. Here, we report that SA‐β‐gal activity is present in the visceral endoderm layer of early postimplantation mouse embryos in predictable patterns that vary as the embryo progresses in development. However, determination of the mitotic index and analysis of the expression of Cdkn1a (p21), a marker of senescent cells, do not indicate cellular senescence. Instead, analysis of embryos in culture revealed the presence of SA‐β‐gal activity in apical vacuoles of visceral endoderm cells likely a reflection of acidic β‐galactosidase function in these organelles. SA‐β‐gal serves as a practical marker of the dynamics of the visceral endoderm that can be applied to developmental as well as functional studies of early mammalian embryos. genesis 52:300–308, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Human cells do not indefinitely proliferate. Upon external and/or intrinsic cues, cells might die or enter a stable cell cycle arrest called senescence. Several cellular mechanisms, such as telomere shortening and abnormal expression of mitogenic oncogenes, have been shown to cause senescence. Senescence is not restricted to normal cells; cancer cells have also been reported to senesce.Chemotherapeutical drugs have been shown to induce senescence in cancer cells. However, it remains controversial whether senescence prevents or promotes tumorigenesis. As it might eventually be patient-specific, a rapid and sensitive method to assess senescence in cancer cell will soon be required.To this end, the standard β-galactosidase assay, the currently used method, presents major drawbacks: it is time consuming and not sensitive. We propose here a flow cytometry-based assay to study senescence on live cells. This assay offers the advantage of being rapid, sensitive, and can be coupled to the immunolabeling of various cellular markers.  相似文献   

8.
The work concerns the senescence of isolated young leaves of oats (Avena sativa) floated on water or solutions. Senescence is rapid in darkness but slow in white light; the effect of light is not due to photosynthesis, but is paralleled by stomatal opening. Closure of the stomata by osmotic or chemical means makes senescence in light proceed as fast as in darkness, while opening the stomata in darkness by cytokinins, fusicoccin,etc., delays senescence to rates typical of light. The osmotic closure in light is mediated by abscisic acid, and since this also accumulates in darkness it appears as a major factor controlling senescence. Efflux of ions into the solution; indicating increased permeability, occurs almost in parallel with senescence. Senescence in light is accelerated by 1-aminocyclopropane-l-carboxylic acid (ACC) and inhibited by cobalt, silver or aminoethoxyvinyl glycine (AVG) which interfere with ethylene production or action; however, ethylene’s role is unclear because some reagents, including kinetin, that delay senescence, actually increase ethylene production. At the endogenous level, therefore, ethylene may not be a limiting factor. Finally, a new ethylene-generating system is described in which the dehydrogenation of linoleic acid is coupled through manganese to the oxidation of ACC; it is probably activein vivo.  相似文献   

9.
Changes in telomere chromatin have been linked to cellular senescence, but the underlying mechanisms and impact on lifespan are unclear. We found that inactivation of the Sas2 histone acetyltransferase delays senescence in Saccharomyces cerevisiae telomerase (tlc1) mutants through a homologous recombination‐dependent mechanism. Sas2 acetylates histone H4 lysine 16 (H4K16), and telomere shortening in tlc1 mutants was accompanied by a selective and Sas2‐dependent increase in subtelomeric H4K16 acetylation. Further, mutation of H4 lysine 16 to arginine, which mimics constitutively deacetylated H4K16, delayed senescence and was epistatic to sas2 deletion, indicating that deacetylated H4K16 mediates the delay caused by sas2 deletion. Sas2 normally prevents the Sir2/3/4 heterochromatin complex from leaving the telomere and spreading to internal euchromatic loci. Senescence was delayed by sir3 deletion, but not sir2 deletion, indicating that senescence delay is mediated by release of Sir3 specifically from the telomere repeats. In contrast, sir4 deletion sped senescence and blocked the delay conferred by sas2 or sir3 deletion. We thus show that manipulation of telomere chromatin modulates senescence caused by telomere shortening.  相似文献   

10.

Introduction  

Chronic and debilitating low back pain is a common condition and a huge economic burden. Many cases are attributed to age-related degeneration of the intervertebral disc (IVD); however, age-related degeneration appears to occur at an accelerated rate in some individuals. We have previously demonstrated biomarkers of cellular senescence within the human IVD and suggested a role for senescence in IVD degeneration. Senescence occurs with ageing but can also occur prematurely in response to stress. We hypothesised that stress-induced premature senescence (SIPS) occurs within the IVD and here we have investigated the expression and production of caveolin-1, a protein that has been shown previously to be upregulated in SIPS.  相似文献   

11.
12.
Cellular senescence is a potent anti-cancer mechanism controlled by tumor suppressor genes, particularly p53 and pRb, which is characterized by the irreversible loss of proliferation. Senescence induced by DNA damage, oncogenic stimulation, or excessive mitogenic input, serves as a barrier that counteracts cancer progression. Emerging evidence in cellular and in in vivo models revealed the involvement of additional signaling players in senescence, including PML, CK2, Bcl-2, PI3K effectors such as Rheb, Rho small GTPases, and cytokines. Recent studies have also implicated protein kinase C (PKC) isozymes as modulators of senescence phenotypes and showed that phorbol esters, widely used PKC activators, can induce senescence in a number of cancer cells. These novel findings suggest a complex array of cross-talks between senescence pathways and may have significant implications in cancer therapy.  相似文献   

13.
Senescence phenotypes and mitochondrial dysfunction are implicated in aging and in premature aging diseases, including ataxia telangiectasia (A‐T). Loss of mitochondrial function can drive age‐related decline in the brain, but little is known about whether improving mitochondrial homeostasis alleviates senescence phenotypes. We demonstrate here that mitochondrial dysfunction and cellular senescence with a senescence‐associated secretory phenotype (SASP) occur in A‐T patient fibroblasts, and in ATM‐deficient cells and mice. Senescence is mediated by stimulator of interferon genes (STING) and involves ectopic cytoplasmic DNA. We further show that boosting intracellular NAD+ levels with nicotinamide riboside (NR) prevents senescence and SASP by promoting mitophagy in a PINK1‐dependent manner. NR treatment also prevents neurodegeneration, suppresses senescence and neuroinflammation, and improves motor function in Atm−/− mice. Our findings suggest a central role for mitochondrial dysfunction‐induced senescence in A‐T pathogenesis, and that enhancing mitophagy as a potential therapeutic intervention.  相似文献   

14.
15.
Lipids seem to have various roles in cellular senescence. We found that cardiolipin very sensitively inhibits growth of normal human fibroblasts, whereas other phospholipids do not at 100 times higher concentrations. Growth arrested cells showed morphology similar to those of normally senesced cells and strongly induced senescence-associated beta-galactosidase. Senescence markers such as the p21(waf1/sdi-1), fibronectin, and collagenase-I genes were significantly upregulated by cardiolipin. In addition, caldiolipin significantly increased in normally senesced human fibroblasts leaving other phospholipids unaltered. These results suggest that accumulation of cardiolipin is one of the causes for replicative senescence.  相似文献   

16.
Senescence is an irreversible cell‐cycle arrest that is elicited by a wide range of factors, including replicative exhaustion. Emerging evidences suggest that cellular senescence contributes to ageing and acts as a tumour suppressor mechanism. To identify novel genes regulating senescence, we performed a loss‐of‐function screen on normal human diploid fibroblasts. We show that downregulation of the AMPK‐related protein kinase 5 (ARK5 or NUAK1) results in extension of the cellular replicative lifespan. Interestingly, the levels of NUAK1 are upregulated during senescence whereas its ectopic expression triggers a premature senescence. Cells that constitutively express NUAK1 suffer gross aneuploidies and show diminished expression of the genomic stability regulator LATS1, whereas depletion of NUAK1 with shRNA exerts opposite effects. Interestingly, a dominant‐negative form of LATS1 phenocopies NUAK1 effects. Moreover, we show that NUAK1 phosphorylates LATS1 at S464 and this has a role in controlling its stability. In summary, our work highlights a novel role for NUAK1 in the control of cellular senescence and cellular ploidy.  相似文献   

17.
Although melanoma ultimately progresses to a highly aggressive and metastatic disease that is typically resistant to currently available therapy, it often begins as a benign nevus consisting of a clonal population of hyperplastic melanocytes that cannot progress because they are locked in a state of cellular senescence. Once senescence is overcome, the nevus exhibits dysplastic features and readily progresses to more lethal stages. Recent advances have convincingly demonstrated that senescence represents a true barrier to the progression of many types of cancer, including melanoma. Thus, understanding the mechanism(s) by which melanoma evades senescence has become a priority in the melanoma research community. Senescence in most cells is regulated through some combination of activities within the RB and p53 pathways. However, differences discovered among various tumor types, some subtle and others quite profound, have revealed that senescence frequently operates in a context-dependent manner. Here we review what is known about melanocyte senescence, and how such knowledge may provide a much-needed edge in our struggles to contain or perhaps vanquish this often-fatal malignancy.  相似文献   

18.
Cellular senescence is a cell cycle arrest accompanied by high expression of cyclin dependent kinase inhibitors which counteract overactive growth signals, which serves as a tumor suppressive mechanism. Senescence can be a result of telomere shortening (natural or replicative senescence) or DNA damage resulting from exogenous stressors (induced senescence). Here, we performed gene expression profiling through RNA-seq of replicative senescence, adriamycin-induced senescence, H2O2-induced senescence, and 5-aza-2-deoxycytidine-induced senescence in order to profile the pathways controlling various types of senescence. Overall, the pathways common to all 4 types of senescence were related to inflammation and the innate immune system. It was also evident that 5-aza-induced senescence mirrors natural replicative senescence due to telomere shortening. We also examined the prevalence of senescence-associated secretory phenotype (SASP) factors in the RNA-seq data, showing that it is a common characteristic of all 4 types of senescence. In addition, we could discriminate changes in gene expression due to quiescence during cellular senescence from those that were specific to senescence.  相似文献   

19.
膜对采后园艺作物衰老的影响   总被引:3,自引:0,他引:3  
植物衰老是由内在和外部环境因素所诱导和引起的一种主动过程 ,其中膜的劣变是这种过程早期的表现形式和基本特征。简要评述了膜系统对采后园艺作物的衰老作用。有证据表明膜系统破坏是采后园艺作物衰老的关键事件。膜脂生物化学和生物物理性质的变化、酶促和非酶促的过氧化作用导致了膜特性的改变和功能上的失调 (如离子泄漏和细胞去区域化 )。这样 ,反过来又进一步引起细胞代谢异常 ,并加速衰老进程。目前 ,膜系统对采后园艺作物衰老的作用过程正逐步得到阐明  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号