首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Hepatitis C virus (HCV) exploits serum-dependent mechanisms that inhibit neutralizing antibodies. Here we demonstrate that high density lipoprotein (HDL) is a key serum factor that attenuates neutralization by monoclonal and HCV patient-derived polyclonal antibodies of infectious pseudo-particles (HCVpp) harboring authentic E1E2 glycoproteins and cell culture-grown genuine HCV (HCVcc). Over 10-fold higher antibody concentrations are required to neutralize either HCV-enveloped particles in the presence of HDL or human serum, and less than 3-5-fold reduction of infectious titers are obtained at saturating antibody concentrations, in contrast to complete inhibition in serum-free conditions. We show that HDL interaction with the scavenger receptor BI (SR-BI), a proposed cell entry co-factor of HCV and a receptor mediating lipid transfer with HDL, strongly reduces neutralization of HCVpp and HCVcc. We found that HDL activation of target cells strongly stimulates cell entry of viral particles by accelerating their endocytosis, thereby suppressing a 1-h time lag during which cell-bound virions are not internalized and can be targeted by antibodies. Compounds that inhibit lipid transfer functions of SR-BI fully restore neutralization by antibodies in human serum. We demonstrate that this functional HDL/SR-BI interaction only interferes with antibodies blocking HCV-E2 binding to CD81, a major HCV receptor, reflecting its prominent role during the cell entry process. Moreover, we identify monoclonal antibodies targeted to epitopes in the E1E2 complex that are not inhibited by HDL. Consistently, we show that antibodies targeted to HCV-E1 efficiently neutralize HCVpp and HCVcc in the presence of human serum.  相似文献   

2.
Hepatitis C virus (HCV) naturally infects only humans and chimpanzees. The determinants responsible for this narrow species tropism are not well defined. Virus cell entry involves human scavenger receptor class B type I (SR-BI), CD81, claudin-1 and occludin. Among these, at least CD81 and occludin are utilized in a highly species-specific fashion, thus contributing to the narrow host range of HCV. We adapted HCV to mouse CD81 and identified three envelope glycoprotein mutations which together enhance infection of cells with mouse or other rodent receptors approximately 100-fold. These mutations enhanced interaction with human CD81 and increased exposure of the binding site for CD81 on the surface of virus particles. These changes were accompanied by augmented susceptibility of adapted HCV to neutralization by E2-specific antibodies indicative of major conformational changes of virus-resident E1/E2-complexes. Neutralization with CD81, SR-BI- and claudin-1-specific antibodies and knock down of occludin expression by siRNAs indicate that the adapted virus remains dependent on these host factors but apparently utilizes CD81, SR-BI and occludin with increased efficiency. Importantly, adapted E1/E2 complexes mediate HCV cell entry into mouse cells in the absence of human entry factors. These results further our knowledge of HCV receptor interactions and indicate that three glycoprotein mutations are sufficient to overcome the species-specific restriction of HCV cell entry into mouse cells. Moreover, these findings should contribute to the development of an immunocompetent small animal model fully permissive to HCV.  相似文献   

3.
Hepatitis C virus (HCV) infection is dependent on at least three coreceptors: CD81, scavenger receptor BI (SR-BI), and claudin-1. The mechanism of how these molecules coordinate HCV entry is unknown. In this study we demonstrate that a cell culture-adapted JFH-1 mutant, with an amino acid change in E2 at position 451 (G451R), has a reduced dependency on SR-BI. This altered receptor dependency is accompanied by an increased sensitivity to neutralization by soluble CD81 and enhanced binding of recombinant E2 to cell surface-expressed and soluble CD81. Fractionation of HCV by density gradient centrifugation allows the analysis of particle-lipoprotein associations. The cell culture-adapted mutation alters the relationship between particle density and infectivity, with the peak infectivity occurring at higher density than the parental virus. No association was observed between particle density and SR-BI or CD81 coreceptor dependence. JFH-1 G451R is highly sensitive to neutralization by gp-specific antibodies, suggesting increased epitope exposure at the virion surface. Finally, an association was observed between JFH-1 particle density and sensitivity to neutralizing antibodies (NAbs), suggesting that lipoprotein association reduces the sensitivity of particles to NAbs. In summary, mutation of E2 at position 451 alters the relationship between particle density and infectivity, disrupts coreceptor dependence, and increases virion sensitivity to receptor mimics and NAbs. Our data suggest that a balanced interplay between HCV particles, lipoprotein components, and viral receptors allows the evasion of host immune responses.  相似文献   

4.
5.
In addition to its effect on high density lipoprotein (HDL) cholesteryl ester (CE) uptake, scavenger receptor BI (SR-BI) was recently reported to stimulate free cholesterol (FC) flux from Chinese hamster ovary (CHO) cells stably expressing mouse SR-BI, a novel function of SR-BI that may play a role in cholesterol removal from the vessel wall where the receptor can be found. It is possible that SR-BI stimulates flux simply by tethering acceptor HDL particles in close apposition to the cell surface thereby facilitating the movement of cholesterol between the plasma membrane and HDL. To test this, we used transiently transfected cells and compared the closely related class B scavenger receptors mouse SR-BI and rat CD36 for their ability to stimulate cholesterol efflux as both receptors bind HDL with high affinity. The results showed that, although acceptor binding to SR-BI may contribute to efflux to a modest extent, the major stimulation of FC efflux occurs independently of acceptor binding to cell surface receptors. Instead our data indicate that SR-BI mediates alterations to membrane FC domains which provoke enhanced bidirectional FC flux between cells and extracellular acceptors.  相似文献   

6.
The scavenger receptor class B type I (SR-BI) has recently been shown to interact with hepatitis C virus (HCV) envelope glycoprotein E2, suggesting that it might be involved at some step of HCV entry into host cells. However, due to the absence of a cell culture system to efficiently amplify HCV, it is not clear how SR-BI contributes to HCV entry. Here, we sought to determine how high density lipoproteins (HDLs), the natural ligand of SR-BI, affect HCV entry. By using the recently described infectious HCV pseudotyped particles (HCVpps) that display functional E1E2 glycoprotein complexes, we showed that HDLs are able to markedly enhance HCVpp entry. We did not find any evidence of HDL association with HCVpps, suggesting that HCVpps do not enter into target cells using HDL as a carrier to bind to its receptor. Interestingly, lipid-free apoA-I and apoA-II, the major HDL apolipoproteins, were unable to enhance HCVpp infectivity. In addition, drugs inhibiting HDL cholesteryl transfer (block lipid transport (BLT)-2 and BLT-4) reduced HDL enhancement of HCVpp entry, suggesting a role for lipid transfer in facilitating HCVpp entry. Importantly, silencing of SR-BI expression in target cells by RNA interference markedly reduced HDL-mediated enhancement of HCVpp entry. Finally, enhancement of HCVpp entry was also suppressed when the SR-BI binding region on HCV glycoprotein E2 was deleted. Altogether, these data indicate that HDL-mediated enhancement of HCVpp entry involves a complex interplay between SR-BI, HDL, and HCV envelope glycoproteins, and they highlight the active role of HDLs in HCV entry.  相似文献   

7.
Serum amyloid A is an acute phase protein that is carried in the plasma largely as an apolipoprotein of high density lipoprotein (HDL). In this study we investigated whether SAA is a ligand for the HDL receptor, scavenger receptor class B type I (SR-BI), and how SAA may influence SR-BI-mediated HDL binding and selective cholesteryl ester uptake. Studies using Chinese hamster ovary cells expressing SR-BI showed that (125)I-labeled SAA, both in lipid-free form and in reconstituted HDL particles, functions as a high affinity ligand for SR-BI. SAA also bound with high affinity to the hepatocyte cell line, HepG2. Alexa-labeled SAA was shown by fluorescence confocal microscopy to be internalized by cells in a SR-BI-dependent manner. To assess how SAA association with HDL influences HDL interaction with SR-BI, SAA-containing HDL was isolated from mice overexpressing SAA through adenoviral gene transfer. SAA presence on HDL had little effect on HDL binding to SR-BI but decreased (30-50%) selective cholesteryl ester uptake. Lipid-free SAA, unlike lipid-free apoA-I, was an effective inhibitor of both SR-BI-dependent binding and selective cholesteryl ester uptake of HDL. We have concluded that SR-BI plays a key role in SAA metabolism through its ability to interact with and internalize SAA and, further, that SAA influences HDL cholesterol metabolism through its inhibitory effects on SR-BI-mediated selective lipid uptake.  相似文献   

8.
The host–virus interactions leading to cell infection with hepatitis C virus (HCV) are not fully understood. The tetraspanin CD-81 and human scavenger receptor SR-BI/Cla1 are major receptors mediating virus cell entry. However, HCV in patients' sera is associated with lipoproteins and infectious potential of the virus depends on lipoproteins associated to virus particles. We show here that lipoprotein lipase (LPL), targeting triglyceride-rich lipoproteins (TRL) to the liver, mediates binding and internalization of HCV to different types of cells, acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate proteoglycans (HSPG). The dimeric structure and catalytic activity of LPL are required for LPL-mediated HCV uptake to cells. Unexpectedly, exogenous LPL significantly inhibits HCVcc infection in vitro . This effect is prevented by anti-LPL antibodies and by tetrahydrolipstatin (THL) a specific inhibitor of LPL enzymatic activity. In addition, we show that antibodies directed to apolipoprotein B (ApoB)-containing lipoproteins efficiently inhibits HCVcc infection. Our findings suggest that LPL mediates HCV cell entry by a mechanism similar to hepatic clearance of TRL from the circulation, promoting a non-productive virus uptake. These data provide new insight into mechanisms of HCV cell entry and suggest that LPL could modulate HCV infectivity in vivo .  相似文献   

9.
Diseases caused by dengue virus (DV) infection vary in severity, with symptoms ranging from mild fever to life threatening dengue hemorrhage fever (DHF) and dengue shock syndrome (DSS). Clinical studies have shown that significant decrease in the level of lipoproteins is correlated with severe illness in DHF/DSS patients. Available evidence also indicates that lipoproteins including high-density lipoprotein (HDL) and low-density lipoprotein (LDL) are able to facilitate cell entry of HCV or other flaviviruses via corresponding lipoprotein receptors. In this study, we found that pre-incubation of DV with human serum leads to an enhanced DV infectivity in various types of cells. Such enhancement could be due to interactions between serum components and DV particles. Through co-immunoprecipitation we revealed that apolipoprotein A-I (ApoA-I), the major protein component in HDL, is associated with DV particles and is able to promote DV infection. Based on that observation, we further found that siRNA knockdown of the scavenger receptor class B type I (SR-BI), the cell receptor of ApoA-I, abolished the activity of ApoA-I in enhancement of DV infection. This suggests that ApoA-I bridges DV particles and cell receptor SR-BI and facilitates entry of DV into cells. FACS analysis of cell surface dengue antigen after virus absorption further confirmed that ApoA-I enhances DV infection via promoting initial attachment of the virus to cells. These findings illustrate a novel entry route of DV into cells, which may provide insights into the functional importance of lipoproteins in dengue pathogenesis.  相似文献   

10.
Hepatitis C virus (HCV) enters cells via a pH- and clathrin-dependent endocytic pathway. Scavenger receptor BI (SR-BI) and CD81 are important entry factors for HCV internalization into target cells. The SR-BI gene gives rise to at least two mRNA splice variants, SR-BI and SR-BII, which differ in their C termini. SR-BI internalization remains poorly understood, but SR-BII is reported to endocytose via a clathrin-dependent pathway, making it an attractive target for HCV internalization. We demonstrate that HCV soluble E2 can interact with human SR-BI and SR-BII. Increased expression of SR-BI and SR-BII in the Huh-7.5 hepatoma cell line enhanced HCV strain J6/JFH and JFH infectivity, suggesting that endogenous levels of these receptors limit infection. Elevated expression of SR-BI, but not SR-BII, increased the rate of J6/JFH infection, which may reflect altered intracellular trafficking of the splice variants. In human plasma, HCV particles have been reported to be complexed with lipoproteins, suggesting an indirect interaction of the virus with SR-BI and other lipoprotein receptors. Plasma from J6/JFH-infected uPA-SCID mice transplanted with human hepatocytes demonstrates an increased infectivity for SR-BI/II-overexpressing Huh-7.5 cells. Plasma-derived J6/JFH infectivity was inhibited by an anti-E2 monoclonal antibody, suggesting that plasma virus interaction with SR-BI was glycoprotein dependent. Finally, anti-SR-BI antibodies inhibited the infectivity of cell culture- and plasma-derived J6/JFH, suggesting a critical role for SR-BI/II in HCV infection.  相似文献   

11.
The murine class B, type I scavenger receptor mSR-BI is a high and low density lipoprotein (HDL and LDL) receptor that mediates selective uptake of cholesteryl esters. Here we describe a reconstituted phospholipid/cholesterol liposome assay of the binding and selective uptake activities of SR-BI derived from detergent-solubilized cells. The assay, employing lysates from epitope-tagged receptor (mSR-BI-t1)-expressing mammalian and insect cells, recapitulated many features of SR-BI activity in intact cells, including high affinity and saturable (125)I-HDL binding, selective lipid uptake from [(3)H]cholesteryl ether-labeled HDL, and poor inhibition of HDL receptor activity by LDL. The novel properties of a mutated receptor (Q402R/Q418R, normal LDL binding but loss of most HDL binding) were reproduced in the assay, as was the ability of the SR-BI homologue CD36 to bind HDL but not mediate efficient lipid uptake. In this assay, essentially homogeneously pure mSR-BI-t1, prepared by single-step immunoaffinity chromatography, mediated high affinity HDL binding and efficient selective lipid uptake from HDL. Thus, SR-BI-mediated HDL binding and selective lipid uptake are intrinsic properties of the receptor that do not require the intervention of other proteins or specific cellular structures or compartments.  相似文献   

12.
Werder M  Han CH  Wehrli E  Bimmler D  Schulthess G  Hauser H 《Biochemistry》2001,40(38):11643-11650
The serum lipoprotein high-density lipoprotein (HDL), which is a ligand of scavenger receptors such as scavenger receptor class B type I (SR-BI) and cluster determinant 36 (CD36), can act as a donor particle for intestinal lipid uptake into the brush border membrane (BBM). Both cholesterol and phospholipids are taken up by the plasma membrane of BBM vesicles (BBMV) and Caco-2 cells in a facilitated (protein-mediated) process. The protein-mediated transfer of cholesterol from reconstituted HDL to BBMV depends on the lipid composition of the HDL. In the presence of sphingomyelin, the transfer of cholesterol is slowed by a factor of about 3 probably due to complex formation between cholesterol and the sphingolipid. It is shown that the mechanism of lipid transfer from reconstituted HDL to either BBMV or Caco-2 cells as the acceptor is consistent with selective lipid uptake: the lipid donor docks at the membrane-resident scavenger receptors which mediate the transfer of lipids between donor and acceptor. Selective lipid uptake implies that lipid, but no apoprotein is transferred from the donor to the BBM, thus excluding endocytotic processes. The two BBM models used here clearly indicate that fusion of donor particles with the BBM can be ruled out as a major mechanism contributing to intestinal lipid uptake. Here we demonstrate that CD36, another member of the family of scavenger receptors, is present in rabbit and human BBM vesicles. This receptor mediates the uptake of free cholesterol, but not of esterified cholesterol, the uptake of which is mediated exclusively by SR-BI. More than one scavenger receptor appears to be involved in the uptake of free cholesterol with SR-BI contributing about 25% and CD36 about 35%. There is another yet unidentified protein accounting for the remaining 30 to 40%.  相似文献   

13.
The class B scavenger receptors SR-BI and CD36 exhibit a broad ligand binding specificity. SR-BI is well characterized as a HDL receptor that mediates selective cholesteryl ester uptake from HDL. CD36, a receptor for oxidized LDL, also binds HDL and mediates selective cholesteryl ester uptake, although much less efficiently than SR-BI. Apolipoprotein A-II (apoA-II), the second most abundant HDL protein, is considered to be proatherogenic, but the underlying mechanisms are unclear. We previously showed that apoA-II modulates SR-BI-dependent binding and selective uptake of cholesteryl ester from reconstituted HDL. To investigate the effect of apoA-II in naturally occurring HDL on these processes, we compared HDL without apoA-II (from apoA-II null mice) with HDLs containing differing amounts of apoA-II (from C57BL/6 mice and transgenic mice expressing a mouse apoA-II transgene). The level of apoA-II in HDL was inversely correlated with HDL binding and selective cholesteryl ester uptake by both scavenger receptors, particularly CD36. Interestingly, for HDL lacking apoA-II, the efficiency with which CD36 mediated selective uptake reached a level similar to that of SR-BI. These results demonstrate that apoA-II exerts a marked effect on HDL binding and selective lipid uptake by the class B scavenger receptors and establishes a potentially important relationship between apoA-II and CD36.  相似文献   

14.
Hepatitis C virus (HCV) particles assemble along the very low density lipoprotein pathway and are released from hepatocytes as entities varying in their degree of lipid and apolipoprotein (apo) association as well as buoyant densities. Little is known about the cell entry pathway of these different HCV particle subpopulations, which likely occurs by regulated spatiotemporal processes involving several cell surface molecules. One of these molecules is the scavenger receptor BI (SR-BI), a receptor for high density lipoprotein that can bind to the HCV glycoprotein E2. By studying the entry properties of infectious virus subpopulations differing in their buoyant densities, we show that these HCV particles utilize SR-BI in a manifold manner. First, SR-BI mediates primary attachment of HCV particles of intermediate density to cells. These initial interactions involve apolipoproteins, such as apolipoprotein E, present on the surface of HCV particles, but not the E2 glycoprotein, suggesting that lipoprotein components in the virion act as host-derived ligands for important entry factors such as SR-BI. Second, we found that in contrast to this initial attachment, SR-BI mediates entry of HCV particles independent of their buoyant density. This function of SR-BI does not depend on E2/SR-BI interaction but relies on the lipid transfer activity of SR-BI, probably by facilitating entry steps along with other HCV entry co-factors. Finally, our results underscore a third function of SR-BI governed by specific residues in hypervariable region 1 of E2 leading to enhanced cell entry and depending on SR-BI ability to bind to E2.  相似文献   

15.
Hepatitis C virus (HCV) or HCV-low-density lipoprotein (LDL) complexes interact with the LDL receptor (LDLr) and the HCV envelope glycoprotein E2 interacts with CD81 in vitro. However, E2 interactions with LDLr and HCV interactions with CD81 have not been clearly described. Using sucrose gradient-purified low-density particles (1.03 to 1.07 g/cm(3)), intermediate-density particles (1. 12 to 1.18 g/cm(3)), recombinant E2 protein, or control proteins, we assessed binding to MOLT-4 cells, foreskin fibroblasts, or LDLr-deficient foreskin fibroblasts at 4 degrees C by flow cytometry and confocal microscopy. Viral entry was determined by measuring the coentry of alpha-sarcin, a protein synthesis inhibitor. We found that low-density HCV particles, but not intermediate-density HCV or controls bound to MOLT-4 cells and fibroblasts expressing the LDLr. Binding correlated with the extent of cellular LDLr expression and was inhibited by LDL but not by soluble CD81. In contrast, E2 binding was independent of LDLr expression and was inhibited by human soluble CD81 but not mouse soluble CD81 or LDL. Based on confocal microscopy, we found that low-density HCV particles and LDL colocalized on the cell surface. The addition of low-density HCV but not intermediate-density HCV particles to MOLT-4 cells allowed coentry of alpha-sarcin, indicating viral entry. The amount of viral entry also correlated with LDLr expression and was independent of the CD81 expression. Using a solid-phase immunoassay, recombinant E2 protein did not interact with LDL. Our data indicate that E2 binds CD81; however, virus particles utilize LDLr for binding and entry. The specific mechanism by which HCV particles interact with LDL or the LDLr remains unclear.  相似文献   

16.
Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.Hepatitis C virus (HCV) is a global blood-borne pathogen, with 3% of the world''s population chronically infected. Most infections are asymptomatic, yet 60 to 80% become persistent and lead to severe fibrosis and cirrhosis, hepatic failure, or hepatocellular carcinoma (3). Currently available therapies are limited to the administration of pegylated alpha interferon in combination with ribavirin, which are expensive and often unsuccessful, with significant side effects (23, 36). Thus, the development of novel therapeutic approaches against HCV remains a high priority (18, 40, 60). Targeting the early steps of HCV infection may represent one such option, and much effort is being devoted to uncovering the mechanism of viral attachment and entry.The current view is that HCV entry into target cells occurs after attachment to specific cellular receptors via its surface glycoproteins E1 and E2 (27). The molecules to which HCV initially binds might constitute a diverse collection of cellular proteins, carbohydrates, and lipids that concentrate viruses on the cell surface and determine to a large extent which cell types, tissues, and organisms HCV can infect.CD81, claudin 1 (CLDN1), occludin (OCLN), and scavenger receptor class B type I (SR-BI) were previously shown to play essential roles in HCV cell entry (15, 22, 26, 35, 42, 43, 50, 63, 64).Recent reports suggest that CD81 engagement triggers intracellular signaling responses, ultimately leading to actin remodeling and the relocalization of CD81 to tight junctions (TJ) (11). Thus, CD81 may function as a bridge between the initial interaction of the virus with receptors on the basolateral surface of the hepatocyte and the TJ where two of the HCV entry molecules, CLDN1 and OCLN, are located. CD81 acts as a postbinding factor, and the TJ proteins CLDN1 and OCLN seem to be involved in late steps of HCV entry, such as HCV glycoprotein-dependent cell fusion (9, 11, 22). The discovery of TJ proteins as entry factors has added complexity to the model of HCV entry, suggesting parallels with other viruses like coxsackievirus B infection, where an initial interaction of the viral particle with the primary receptor decay-accelerating factor induces the lateral movement of the virus from the luminal surface to TJ, where coxsackievirus B binds coxsackievirus-adenovirus receptor and internalization takes place (17).Much less is known about the specific role of SR-BI in virus entry: neither the specific step of the entry pathway that SR-BI is involved in nor the protein determinants that mediate such processes are known. SR-BI is a lipoprotein receptor of 509 amino acids (aa) with cytoplasmic C- and N-terminal domains separated by a large extracellular domain (1, 13, 14). It is expressed primarily in liver and steroidogenic tissues, where it mediates selective cholesteryl ester uptake from high-density lipoprotein (HDL) and may act as an endocytic receptor (45, 46, 51, 52). SR-BI was originally identified as being a putative receptor for HCV because it binds soluble E2 (sE2) through interactions with E2 hypervariable region 1 (HVR1) (8, 50). RNA interference studies as well as the ability to block both HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) infections with anti SR-BI antibodies have confirmed its involvement in the HCV entry process (7, 8, 15, 26, 33, 63). Intriguingly, lipoproteins were previously shown to modulate HCV infection through SR-BI (12). It was indeed previously demonstrated that two natural ligands of SR-BI, HDL and oxidized low-density lipoprotein, can improve and inhibit HCV entry, respectively (57, 59). Moreover, small-molecule inhibitors of SR-BI-mediated lipid transfer (block of lipid transfer BLT-3 and BLT-4) abrogate the stimulation of HCV infectivity by human serum or HDL, suggesting that the enhancement of viral infection might be dependent on the lipid exchange activity of SR-BI (20, 58).We previously generated high-affinity monoclonal antibodies (MAbs) specific for human SR-BI and showed that they were capable of inhibiting the binding of SR-BI to sE2 and blocking HCVcc infection of human hepatoma cells (15). The HDL-induced enhancement of infection had no impact on the ability of the anti-SR-BI MAbs to block HCV infection, and the antibodies were effective in counteracting HCV infection even in the absence of lipoproteins. These data demonstrated that SR-BI participates in the HCV infection process as an entry receptor by directly interacting with viral glycoproteins. Here we have used one of the anti-SR-BI MAbs to show that SR-BI participates in an early step of HCV infection. By assays of binding of sE2 to SR-BI molecules from different species and to SR-BI mutants, we identified species-specific SR-BI protein residues that are required for sE2 binding. The functional significance of these observations was confirmed by the finding that SR-BI mutants with reduced binding to sE2 were also impaired in their ability to restore the infectivity of an SR-BI-knocked-down Huh-7.5 cell line. Finally, we demonstrated that SR-BI mutants with impaired sE2 binding can still form oligomeric structures and that they can bind the physiological ligand HDL and mediate cholesterol efflux, suggesting that distinct protein determinants are responsible for the interaction with HDL and the HCV particle.  相似文献   

17.
Lipoprotein components are crucial factors for hepatitis C virus (HCV) assembly and entry. As hepatoma cells producing cell culture-derived HCV (HCVcc) particles are impaired in some aspects of lipoprotein metabolism, it is of upmost interest to biochemically and functionally characterize the in vivo produced viral particles, particularly regarding how lipoprotein components modulate HCV entry by lipid transfer receptors such as scavenger receptor BI (SR-BI). Sera from HCVcc-infected liver humanized FRG mice were separated by density gradients. Viral subpopulations, termed HCVfrg particles, were characterized for their physical properties, apolipoprotein association, and infectivity. We demonstrate that, in contrast to the widely spread distribution of apolipoproteins across the different HCVcc subpopulations, the most infectious HCVfrg particles are highly enriched in apoE, suggesting that such apolipoprotein enrichment plays a role for entry of in vivo derived infectious particles likely via usage of apolipoprotein receptors. Consistent with this salient feature, we further reveal previously undefined functionalities of SR-BI in promoting entry of in vivo produced HCV. First, unlike HCVcc, SR-BI is a particularly limiting factor for entry of HCVfrg subpopulations of very low density. Second, HCVfrg entry involves SR-BI lipid transfer activity but not its capacity to bind to the viral glycoprotein E2. In conclusion, we demonstrate that composition and biophysical properties of the different subpopulations of in vivo produced HCVfrg particles modulate their levels of infectivity and receptor usage, hereby featuring divergences with in vitro produced HCVcc particles and highlighting the powerfulness of this in vivo model for the functional study of the interplay between HCV and liver components.  相似文献   

18.
Bertaux C  Dragic T 《Journal of virology》2006,80(10):4940-4948
The CD81 tetraspanin was first identified as a hepatitis C virus (HCV) receptor by its ability to bind the soluble ectodomain of envelope glycoprotein E2 (sE2). More recently, it has been suggested that CD81 is necessary but not sufficient for HCV entry into target cells. Here we present further evidence that putative human hepatocyte-specific factors act in concert with CD81 to mediate sE2 binding and HCV pseudoparticle (HCVpp) entry. Moreover, we show that CD81-mediated HCVpp entry entails E2 binding to residues in the large extracellular loop as well as molecular events mediated by the transmembrane and intracellular domains of CD81. The concept that CD81 receptor function progresses in stages is further supported by our finding that anti-CD81 monoclonal antibodies inhibit HCVpp entry by different mechanisms. The half-life of CD81-HCVpp binding was determined to be approximately 17 min, and we propose that binding is followed by CD81 oligomerization, partitioning into cholesterol-rich membrane domains, or other, lateral protein-protein interactions. This results in the formation of a receptor-virus complex that undergoes endocytosis and pH-dependent membrane fusion.  相似文献   

19.
Tong Y  Zhu Y  Xia X  Liu Y  Feng Y  Hua X  Chen Z  Ding H  Gao L  Wang Y  Feitelson MA  Zhao P  Qi ZT 《Journal of virology》2011,85(6):2793-2802
Hepatitis C virus (HCV)-related research has been hampered by the lack of appropriate small-animal models. It has been reported that tree shrews, or tupaias (Tupaia belangeri), can be infected with serum-derived HCV. However, these reports do not firmly establish the tupaia as a reliable model of HCV infection. Human CD81, scavenger receptor class B type I (SR-BI), claudin 1 (CLDN1), and occludin (OCLN) are considered essential receptors or coreceptors for HCV cell entry. In the present study, the roles of these tupaia orthologs in HCV infection were assessed. Both CD81 and SR-BI of tupaia were found to be able to bind with HCV envelope protein 2 (E2). In comparison with human CD81, tupaia CD81 exhibited stronger binding activity with E2 and increased HCV pseudoparticle (HCVpp) cell entry 2-fold. The 293T cells transfected with tupaia CLDN1 became susceptible to HCVpp infection. Moreover, simultaneous transfection of the four tupaia factors into mouse NIH 3T3 cells made the cells susceptible to HCVpp infection. HCVpp of diverse genotypes were able to infect primary tupaia hepatocytes (PTHs), and this infection could be blocked by either anti-CD81 or anti-SR-BI. PTHs could be infected by cell culture-produced HCV (HCVcc) and did produce infectious progeny virus in culture supernatant. These findings indicate that PTHs possess all of the essential factors required for HCV entry and support the complete HCV infection cycle. This highlights both the mechanisms of susceptibility of tupaia to HCV infection and the possibility of using tupaia as a promising small-animal model in HCV study.  相似文献   

20.
Scavenger receptor BI (SR-BI) mediates the selective uptake of high-density lipoprotein (HDL) cholesteryl ester (CE), a process by which HDL CE is taken into the cell without degradation of the HDL particle. In addition, SR-BI stimulates the bi-directional flux of free cholesterol (FC) between cells and lipoproteins, an activity that may be responsible for net cholesterol efflux from peripheral cells as well as the rapid hepatic clearance of FC from plasma HDL. SR-BI also increases cellular cholesterol mass and alters cholesterol distribution in plasma membrane domains as judged by the enhanced sensitivity of membrane cholesterol to extracellular cholesterol oxidase. In contrast, CD36, a closely related class B scavenger receptor, has none of these activities despite binding HDL with high affinity. In the present study, analyses of chimeric SR-BI/CD36 receptors and domain-deleted SR-BI have been used to test the various domains of SR-BI for functional activities related to HDL CE selective uptake, bi-directional FC flux, and the alteration of membrane cholesterol mass and distribution. The results show that each of these activities localizes to the extracellular domain of SR-BI. The N-terminal cytoplasmic tail and transmembrane domains appear to play no role in these activities other than targeting the receptor to the plasma membrane. The C-terminal tail of SR-BI is dispensable for activity as well for targeting to the plasma membrane. Thus, multiple distinct functional activities are localized to the SR-BI extracellular domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号