首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Hepatitis C virus (HCV) exploits serum-dependent mechanisms that inhibit neutralizing antibodies. Here we demonstrate that high density lipoprotein (HDL) is a key serum factor that attenuates neutralization by monoclonal and HCV patient-derived polyclonal antibodies of infectious pseudo-particles (HCVpp) harboring authentic E1E2 glycoproteins and cell culture-grown genuine HCV (HCVcc). Over 10-fold higher antibody concentrations are required to neutralize either HCV-enveloped particles in the presence of HDL or human serum, and less than 3-5-fold reduction of infectious titers are obtained at saturating antibody concentrations, in contrast to complete inhibition in serum-free conditions. We show that HDL interaction with the scavenger receptor BI (SR-BI), a proposed cell entry co-factor of HCV and a receptor mediating lipid transfer with HDL, strongly reduces neutralization of HCVpp and HCVcc. We found that HDL activation of target cells strongly stimulates cell entry of viral particles by accelerating their endocytosis, thereby suppressing a 1-h time lag during which cell-bound virions are not internalized and can be targeted by antibodies. Compounds that inhibit lipid transfer functions of SR-BI fully restore neutralization by antibodies in human serum. We demonstrate that this functional HDL/SR-BI interaction only interferes with antibodies blocking HCV-E2 binding to CD81, a major HCV receptor, reflecting its prominent role during the cell entry process. Moreover, we identify monoclonal antibodies targeted to epitopes in the E1E2 complex that are not inhibited by HDL. Consistently, we show that antibodies targeted to HCV-E1 efficiently neutralize HCVpp and HCVcc in the presence of human serum.  相似文献   

2.
HCV entry into cells is a multi-step and slow process. It is believed that the initial capture of HCV particles by glycosaminoglycans and/or lipoprotein receptors is followed by coordinated interactions with the scavenger receptor class B type I (SR-BI), a major receptor of high-density lipoprotein (HDL), the CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading to uptake and cellular penetration of HCV via low-pH endosomes. Several reports have indicated that HDL promotes HCV entry through interaction with SR-BI. This pathway remains largely elusive, although it was shown that HDL neither associates with HCV particles nor modulates HCV binding to SR-BI. In contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed indirectly because of lack of cells in which functional complementation assays with mutant receptors could be performed. Here we identified for the first time two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma cells allowed unambiguous investigation of human SR-BI functions during HCV entry. By expressing different SR-BI mutants in either cell line, our results revealed features of SR-BI intracellular domains that influence HCV infectivity without affecting receptor binding and stimulation of HCV entry induced by HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain that, by altering HCV binding, inhibit entry. Finally, we characterized alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results highlight specific SR-BI determinants required during HCV entry and physiological lipid transfer functions hijacked by HCV to favor infection.  相似文献   

3.
The N terminus of hepatitis C virus (HCV) envelope glycoprotein E2 contains a hypervariable region (HVR1) which has been proposed to play a role in viral entry. Despite strong amino acid variability, HVR1 is globally basic, with basic residues located at specific sequence positions. Here we show by analyzing a large number of HVR1 sequences that the frequency of basic residues at each position is genotype dependent. We also used retroviral pseudotyped particles (HCVpp) harboring genotype 1a envelope glycoproteins to study the role of HVR1 basic residues in entry. Interestingly, HCVpp infectivity globally increased with the number of basic residues in HVR1. However, a shift in position of some charged residues also modulated HCVpp infectivity. In the absence of basic residues, infectivity was reduced to the same level as that of a mutant deleted of HVR1. We also analyzed the effect of these mutations on interactions with some potential HCV receptors. Recognition of CD81 was not affected by changes in the number of charged residues, and we did not find a role for heparan sulfates in HCVpp entry. The involvement of the scavenger receptor class B type I (SR-BI) was indirectly analyzed by measuring the enhancement of infectivity of the mutants in the presence of the natural ligand of SR-BI, high-density lipoproteins (HDL). However, no correlation between the number of basic residues within HVR1 and HDL enhancement effect was observed. Despite the lack of evidence of the involvement of known potential receptors, our results demonstrate that the presence of basic residues in HVR1 facilitates virus entry.  相似文献   

4.
Hepatitis C virus (HCV) circulates in the bloodstream in different forms, including complexes with immunoglobulins and/or lipoproteins. To address the significance of such associations, we produced or treated HCV pseudoparticles (HCVpp), a valid model of HCV cell entry and its inhibition, with na?ve or patient-derived sera. We demonstrate that infection of hepatocarcinoma cells by HCVpp is increased more than 10-fold by human serum factors, of which high-density lipoprotein (HDL) is a major component. Infection enhancement requires scavenger receptor BI, a molecule known to mediate HDL uptake into cells as well as HCVpp entry, and involves conserved amino acid positions in hypervariable region 1 (HVR1) of the E2 glycoprotein. Additionally, we show that the interaction with human serum or HDL, but not with low-density lipoprotein, leads to the protection of HCVpp from neutralizing antibodies, including monoclonal antibodies and antibodies present in patient sera. Finally, the deletion or mutation of HVR1 in HCVpp abolishes infection enhancement and leads to increased sensitivity to neutralizing antibodies/sera compared to that of parental HCVpp. Altogether, these results assign to HVR1 new roles which are complementary in helping HCV to survive within its host. Besides immune escape by mutation, HRV1 can mediate the enhancement of cell entry and the protection of virions from neutralizing antibodies. By preserving a balance between these functions, HVR1 may be essential for the viral persistence of HCV.  相似文献   

5.
Hepatitis C virus (HCV) particles assemble along the very low density lipoprotein pathway and are released from hepatocytes as entities varying in their degree of lipid and apolipoprotein (apo) association as well as buoyant densities. Little is known about the cell entry pathway of these different HCV particle subpopulations, which likely occurs by regulated spatiotemporal processes involving several cell surface molecules. One of these molecules is the scavenger receptor BI (SR-BI), a receptor for high density lipoprotein that can bind to the HCV glycoprotein E2. By studying the entry properties of infectious virus subpopulations differing in their buoyant densities, we show that these HCV particles utilize SR-BI in a manifold manner. First, SR-BI mediates primary attachment of HCV particles of intermediate density to cells. These initial interactions involve apolipoproteins, such as apolipoprotein E, present on the surface of HCV particles, but not the E2 glycoprotein, suggesting that lipoprotein components in the virion act as host-derived ligands for important entry factors such as SR-BI. Second, we found that in contrast to this initial attachment, SR-BI mediates entry of HCV particles independent of their buoyant density. This function of SR-BI does not depend on E2/SR-BI interaction but relies on the lipid transfer activity of SR-BI, probably by facilitating entry steps along with other HCV entry co-factors. Finally, our results underscore a third function of SR-BI governed by specific residues in hypervariable region 1 of E2 leading to enhanced cell entry and depending on SR-BI ability to bind to E2.  相似文献   

6.
Functional hepatitis C virus envelope glycoproteins   总被引:8,自引:0,他引:8  
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that are released from HCV polyprotein by signal peptidase cleavage. These proteins assemble as a noncovalent heterodimer that is retained in the endoplasmic reticulum. The transmembrane domains of E1 and E2 are multifunctional and play a major role in the biogenesis of E1E2 heterodimer. Because HCV does not replicate efficiently in cell culture, surrogate models have been developed to study some steps of its life cycle. Recently, infectious pseudotype particles (HCVpp) harboring unmodified E1E2 glycoproteins onto retroviral core particles have successfully been generated. They mimic the function of native HCV particles, thus representing a model to study the early steps of its lifecycle. The noncovalent E1E2 heterodimers present at the surface of the HCVpp, which contain complex-type glycans indicating modification by Golgi enzymes, are likely to mediate virus entry. The CD81 tetraspanin and the scavenger receptor SR-BI, two cellular molecules shown to interact with E2, are essential for HCVpp entry. However, these two proteins are not sufficient to provide entry functions in non permissive cells, suggesting that additional unidentified cellular factor(s) are necessary for HCVpp entry. Potential structural homology with other fusion proteins from closely related viruses suggest that HCV envelope glycoproteins belong to class II fusion proteins, but contrary to what is observed for other viral envelope proteins of this class, they are highly glycosylated and are not matured by a cellular endoprotease cleavage.  相似文献   

7.
Tong Y  Zhu Y  Xia X  Liu Y  Feng Y  Hua X  Chen Z  Ding H  Gao L  Wang Y  Feitelson MA  Zhao P  Qi ZT 《Journal of virology》2011,85(6):2793-2802
Hepatitis C virus (HCV)-related research has been hampered by the lack of appropriate small-animal models. It has been reported that tree shrews, or tupaias (Tupaia belangeri), can be infected with serum-derived HCV. However, these reports do not firmly establish the tupaia as a reliable model of HCV infection. Human CD81, scavenger receptor class B type I (SR-BI), claudin 1 (CLDN1), and occludin (OCLN) are considered essential receptors or coreceptors for HCV cell entry. In the present study, the roles of these tupaia orthologs in HCV infection were assessed. Both CD81 and SR-BI of tupaia were found to be able to bind with HCV envelope protein 2 (E2). In comparison with human CD81, tupaia CD81 exhibited stronger binding activity with E2 and increased HCV pseudoparticle (HCVpp) cell entry 2-fold. The 293T cells transfected with tupaia CLDN1 became susceptible to HCVpp infection. Moreover, simultaneous transfection of the four tupaia factors into mouse NIH 3T3 cells made the cells susceptible to HCVpp infection. HCVpp of diverse genotypes were able to infect primary tupaia hepatocytes (PTHs), and this infection could be blocked by either anti-CD81 or anti-SR-BI. PTHs could be infected by cell culture-produced HCV (HCVcc) and did produce infectious progeny virus in culture supernatant. These findings indicate that PTHs possess all of the essential factors required for HCV entry and support the complete HCV infection cycle. This highlights both the mechanisms of susceptibility of tupaia to HCV infection and the possibility of using tupaia as a promising small-animal model in HCV study.  相似文献   

8.
The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process.  相似文献   

9.
Several cell surface molecules have been proposed as receptor candidates, mediating cell entry of hepatitis C virus (HCV) on the basis of their physical association with virions or with soluble HCV E2 glycoproteins. However, due to the lack of infectious HCV particles, evidence that these receptor candidates support infection was missing. Using our recently described infectious HCV pseudotype particles (HCVpp) that display functional E1E2 glycoprotein complexes, here we show that HCV is a pH-dependent virus, implying that its receptor component(s) mediate virion internalization by endocytosis. Expression of the CD81 tetraspanin in non-permissive CD81-negative hepato-carcinoma cells was sufficient to restore susceptibility to HCVpp infection, confirming its critical role as a cell attachment factor. As a cell surface molecule likely to mediate endosomal trafficking, we demonstrate that the human scavenger receptor class B type 1 (SR-B1), a high-density lipoprotein-internalization molecule that we previously proposed as a novel HCV receptor candidate due to its affinity with E2 glycoproteins, is required for infection of CD81-expressing hepatic cells. By receptor competition assays, we found that SR-B1 antibodies that blocked binding of soluble E2 could prevent HCVpp infectivity. Furthermore, we establish that the hyper-variable region 1 of the HCV E2 glycoprotein is a critical determinant mediating entry in SR-B1-positive cells. Finally, by correlating expression of HCV receptors and infectivity, we suggest that, besides CD81 and SR-B1, additional hepatocyte-specific co-factor(s) are necessary for HCV entry.  相似文献   

10.
Bertaux C  Dragic T 《Journal of virology》2006,80(10):4940-4948
The CD81 tetraspanin was first identified as a hepatitis C virus (HCV) receptor by its ability to bind the soluble ectodomain of envelope glycoprotein E2 (sE2). More recently, it has been suggested that CD81 is necessary but not sufficient for HCV entry into target cells. Here we present further evidence that putative human hepatocyte-specific factors act in concert with CD81 to mediate sE2 binding and HCV pseudoparticle (HCVpp) entry. Moreover, we show that CD81-mediated HCVpp entry entails E2 binding to residues in the large extracellular loop as well as molecular events mediated by the transmembrane and intracellular domains of CD81. The concept that CD81 receptor function progresses in stages is further supported by our finding that anti-CD81 monoclonal antibodies inhibit HCVpp entry by different mechanisms. The half-life of CD81-HCVpp binding was determined to be approximately 17 min, and we propose that binding is followed by CD81 oligomerization, partitioning into cholesterol-rich membrane domains, or other, lateral protein-protein interactions. This results in the formation of a receptor-virus complex that undergoes endocytosis and pH-dependent membrane fusion.  相似文献   

11.

Introduction

Integration-deficient lentiviral vectors (IDLVs) are a promising platform for immunisation to elicit both humoral immunity and cellular mediated immunity (CMI). Here, we compared the specific immunity in mice immunised via different regimens (homologous and cocktail) with IDLV-based HCV pseudoparticles (HCVpps) carrying pseudotyped glycoproteins E1E2 and bearing the HCV NS3 gene. Humoral and cell-mediated immune responses were also evaluated after IDLV-HCVpp immunisation combined with heterologous rAd5-CE1E2 priming protocols. Sera from the mice effectively elicited anti-E1, -E2, and -NS3 antibody responses, and neutralised various HCVpp subtypes (1a, 1b, 2a, 3a and 5a). No significant CMI was detected in the groups immunised with IDLV-based HCVpps. In contrast, the combination of rAd5-CE1E2 priming and IDLV-based HCVpp boosting induced significant CMI against multiple antigens (E1, E2, and NS3).

Conclusion

IDLV-based HCVpps are a promising vaccination platform and the combination of rAd5-CE1E2 and IDLV-based HCVpp prime-boost strategy should be further explored for the development of a cross-protective HCV vaccine.  相似文献   

12.
许刚  任浩 《生命科学》2012,(2):150-155
B族Ⅰ型清道夫受体(scavenger receptor class B type I,SR-BI)是丙型肝炎病毒(hepatitis C virus,HCV)的受体之一,可以与HCV的包膜蛋白E2结合,介导病毒颗粒进入宿主细胞。伴侣分子PDZK1(PDZdomain containing 1)是一个含有4个PDZ结构域的支架蛋白,其第一个PDZ结构域可以与SR-BI的C端结合,调节其稳定表达和正确定位。研究发现PDZK1基因敲除以后,HCVcc(cell culture produced HCVvirus)和HCVpp(HCV pseudotype particles)的感染性明显下降;重新转入PDZK1后,可以部分恢复感染性。研究表明PDZK1可促进HCV入侵并可能是通过与SR-BI的相互作用介导的。伴侣分子对受体分子的调节在HCV入侵中的作用可能成为HCV治疗的潜在靶标,有助于开发新的治疗方法。  相似文献   

13.
Hepatitis C virus (HCV) enters cells via a pH- and clathrin-dependent endocytic pathway. Scavenger receptor BI (SR-BI) and CD81 are important entry factors for HCV internalization into target cells. The SR-BI gene gives rise to at least two mRNA splice variants, SR-BI and SR-BII, which differ in their C termini. SR-BI internalization remains poorly understood, but SR-BII is reported to endocytose via a clathrin-dependent pathway, making it an attractive target for HCV internalization. We demonstrate that HCV soluble E2 can interact with human SR-BI and SR-BII. Increased expression of SR-BI and SR-BII in the Huh-7.5 hepatoma cell line enhanced HCV strain J6/JFH and JFH infectivity, suggesting that endogenous levels of these receptors limit infection. Elevated expression of SR-BI, but not SR-BII, increased the rate of J6/JFH infection, which may reflect altered intracellular trafficking of the splice variants. In human plasma, HCV particles have been reported to be complexed with lipoproteins, suggesting an indirect interaction of the virus with SR-BI and other lipoprotein receptors. Plasma from J6/JFH-infected uPA-SCID mice transplanted with human hepatocytes demonstrates an increased infectivity for SR-BI/II-overexpressing Huh-7.5 cells. Plasma-derived J6/JFH infectivity was inhibited by an anti-E2 monoclonal antibody, suggesting that plasma virus interaction with SR-BI was glycoprotein dependent. Finally, anti-SR-BI antibodies inhibited the infectivity of cell culture- and plasma-derived J6/JFH, suggesting a critical role for SR-BI/II in HCV infection.  相似文献   

14.
Hepatitis C virus (HCV) naturally infects only humans and chimpanzees. The determinants responsible for this narrow species tropism are not well defined. Virus cell entry involves human scavenger receptor class B type I (SR-BI), CD81, claudin-1 and occludin. Among these, at least CD81 and occludin are utilized in a highly species-specific fashion, thus contributing to the narrow host range of HCV. We adapted HCV to mouse CD81 and identified three envelope glycoprotein mutations which together enhance infection of cells with mouse or other rodent receptors approximately 100-fold. These mutations enhanced interaction with human CD81 and increased exposure of the binding site for CD81 on the surface of virus particles. These changes were accompanied by augmented susceptibility of adapted HCV to neutralization by E2-specific antibodies indicative of major conformational changes of virus-resident E1/E2-complexes. Neutralization with CD81, SR-BI- and claudin-1-specific antibodies and knock down of occludin expression by siRNAs indicate that the adapted virus remains dependent on these host factors but apparently utilizes CD81, SR-BI and occludin with increased efficiency. Importantly, adapted E1/E2 complexes mediate HCV cell entry into mouse cells in the absence of human entry factors. These results further our knowledge of HCV receptor interactions and indicate that three glycoprotein mutations are sufficient to overcome the species-specific restriction of HCV cell entry into mouse cells. Moreover, these findings should contribute to the development of an immunocompetent small animal model fully permissive to HCV.  相似文献   

15.
Lipoprotein components are crucial factors for hepatitis C virus (HCV) assembly and entry. As hepatoma cells producing cell culture-derived HCV (HCVcc) particles are impaired in some aspects of lipoprotein metabolism, it is of upmost interest to biochemically and functionally characterize the in vivo produced viral particles, particularly regarding how lipoprotein components modulate HCV entry by lipid transfer receptors such as scavenger receptor BI (SR-BI). Sera from HCVcc-infected liver humanized FRG mice were separated by density gradients. Viral subpopulations, termed HCVfrg particles, were characterized for their physical properties, apolipoprotein association, and infectivity. We demonstrate that, in contrast to the widely spread distribution of apolipoproteins across the different HCVcc subpopulations, the most infectious HCVfrg particles are highly enriched in apoE, suggesting that such apolipoprotein enrichment plays a role for entry of in vivo derived infectious particles likely via usage of apolipoprotein receptors. Consistent with this salient feature, we further reveal previously undefined functionalities of SR-BI in promoting entry of in vivo produced HCV. First, unlike HCVcc, SR-BI is a particularly limiting factor for entry of HCVfrg subpopulations of very low density. Second, HCVfrg entry involves SR-BI lipid transfer activity but not its capacity to bind to the viral glycoprotein E2. In conclusion, we demonstrate that composition and biophysical properties of the different subpopulations of in vivo produced HCVfrg particles modulate their levels of infectivity and receptor usage, hereby featuring divergences with in vitro produced HCVcc particles and highlighting the powerfulness of this in vivo model for the functional study of the interplay between HCV and liver components.  相似文献   

16.
The human scavenger class B type 1 receptor (SR-B1/Cla1) was identified as a putative receptor for hepatitis C virus (HCV) because it binds to soluble recombinant HCV envelope glycoprotein E2 (sE2). High-density lipoprotein (HDL), a natural SR-B1 ligand, was shown to increase the in vitro infectivity of retroviral pseudoparticles bearing HCV envelope glycoproteins and of cell culture-derived HCV (HCVcc), suggesting that SR-B1 promotes viral entry in an HDL-dependent manner. To determine whether SR-B1 participates directly in HCV infection or facilitates HCV entry through lipoprotein uptake, we generated a panel of monoclonal antibodies (MAbs) against native human SR-B1. Two of them, 3D5 and C167, bound to conformation-dependent SR-B1 determinants and inhibited the interaction of sE2 with SR-B1. These antibodies efficiently blocked HCVcc infection of Huh-7.5 hepatoma cells in a dose-dependent manner. To examine the role of HDL in SR-B1-mediated HCVcc infection, we set up conditions for HCVcc production and infection in serum-free medium. HCVcc efficiently infected Huh-7.5 cells in the absence of serum lipoproteins, and addition of HDL led to a twofold increase in infectivity. However, the HDL-induced enhancement of infection had no impact on the neutralization potency of MAb C167, despite its ability to inhibit both HDL binding to cells and SR-B1-mediated lipid transfer. Of note, MAb C167 also potently blocked Huh-7.5 infection by an HCV strain recovered from HCVcc-infected chimpanzees. These results demonstrate that SR-B1 is essential for infection with HCV produced in vitro and in vivo and suggest the possible use of anti-SR-B1 antibodies as therapeutic agents.  相似文献   

17.
Hepatitis C (HCV) E2 glycoprotein is involved in virus attachment and entry, and its structural organization is largely unknown. Characterization of a panel of human monoclonal antibodies (HMAbs) to HCV by competition studies has led to an immunogenic organization model of E2 with three domains designated A, B, and C and epitopes in each domain having similar structural and functional properties. Domain A contains nonneutralizing epitopes, and domains B and C contain neutralizing epitopes. The isolation and characterization of three new HMAbs within domain A for a total of six provide support for this model. All six domain A HMAbs do not neutralize HCV retroviral pseudotype particle (HCVpp) infection on Huh-7 cells, and all six HMAbs have similar binding affinity and maximum binding, B(max), a relative indicator of epitope density, as other neutralizing HMAbs, suggesting that neutralization is epitope specific and not by binding to any surface epitope. The dose-dependent neutralizing activity of CBH-7, an HMAb to a domain C epitope in spatial proximity to domain A, and of CBH-5, a domain B HMAb to a more distant epitope, were tested in the presence and absence of each domain A HMAb. No enhancement or reduction in CBH-7 or CBH-5 neutralizing activity was observed, indicating that the potential induction of nonneutralizing antibodies should not be a central issue for HCV vaccine design. To assess whether domain A is involved in the structural changes as part of a pH-dependent virus envelope fusion process, changes in antibody binding patterns to normal pH and acid pH-treated HCVpp were measured. Antibody binding affinity of HMAbs to HCVpp was not affected by low pH. However, the B(max) values for low-pH-treated HCVpp with antibodies to domain A increased 46%, for domain C (CBH-7) they increased 23%, and for domain B (CBH-5) there was a decrease of 12%. Collectively, the organization and function of HCV E2 antigenic domains are roughly analogous to the large envelope glycoprotein E organizational structure for other flaviviruses with three distinct structural and functional domains.  相似文献   

18.
Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.Hepatitis C virus (HCV) is a global blood-borne pathogen, with 3% of the world''s population chronically infected. Most infections are asymptomatic, yet 60 to 80% become persistent and lead to severe fibrosis and cirrhosis, hepatic failure, or hepatocellular carcinoma (3). Currently available therapies are limited to the administration of pegylated alpha interferon in combination with ribavirin, which are expensive and often unsuccessful, with significant side effects (23, 36). Thus, the development of novel therapeutic approaches against HCV remains a high priority (18, 40, 60). Targeting the early steps of HCV infection may represent one such option, and much effort is being devoted to uncovering the mechanism of viral attachment and entry.The current view is that HCV entry into target cells occurs after attachment to specific cellular receptors via its surface glycoproteins E1 and E2 (27). The molecules to which HCV initially binds might constitute a diverse collection of cellular proteins, carbohydrates, and lipids that concentrate viruses on the cell surface and determine to a large extent which cell types, tissues, and organisms HCV can infect.CD81, claudin 1 (CLDN1), occludin (OCLN), and scavenger receptor class B type I (SR-BI) were previously shown to play essential roles in HCV cell entry (15, 22, 26, 35, 42, 43, 50, 63, 64).Recent reports suggest that CD81 engagement triggers intracellular signaling responses, ultimately leading to actin remodeling and the relocalization of CD81 to tight junctions (TJ) (11). Thus, CD81 may function as a bridge between the initial interaction of the virus with receptors on the basolateral surface of the hepatocyte and the TJ where two of the HCV entry molecules, CLDN1 and OCLN, are located. CD81 acts as a postbinding factor, and the TJ proteins CLDN1 and OCLN seem to be involved in late steps of HCV entry, such as HCV glycoprotein-dependent cell fusion (9, 11, 22). The discovery of TJ proteins as entry factors has added complexity to the model of HCV entry, suggesting parallels with other viruses like coxsackievirus B infection, where an initial interaction of the viral particle with the primary receptor decay-accelerating factor induces the lateral movement of the virus from the luminal surface to TJ, where coxsackievirus B binds coxsackievirus-adenovirus receptor and internalization takes place (17).Much less is known about the specific role of SR-BI in virus entry: neither the specific step of the entry pathway that SR-BI is involved in nor the protein determinants that mediate such processes are known. SR-BI is a lipoprotein receptor of 509 amino acids (aa) with cytoplasmic C- and N-terminal domains separated by a large extracellular domain (1, 13, 14). It is expressed primarily in liver and steroidogenic tissues, where it mediates selective cholesteryl ester uptake from high-density lipoprotein (HDL) and may act as an endocytic receptor (45, 46, 51, 52). SR-BI was originally identified as being a putative receptor for HCV because it binds soluble E2 (sE2) through interactions with E2 hypervariable region 1 (HVR1) (8, 50). RNA interference studies as well as the ability to block both HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) infections with anti SR-BI antibodies have confirmed its involvement in the HCV entry process (7, 8, 15, 26, 33, 63). Intriguingly, lipoproteins were previously shown to modulate HCV infection through SR-BI (12). It was indeed previously demonstrated that two natural ligands of SR-BI, HDL and oxidized low-density lipoprotein, can improve and inhibit HCV entry, respectively (57, 59). Moreover, small-molecule inhibitors of SR-BI-mediated lipid transfer (block of lipid transfer BLT-3 and BLT-4) abrogate the stimulation of HCV infectivity by human serum or HDL, suggesting that the enhancement of viral infection might be dependent on the lipid exchange activity of SR-BI (20, 58).We previously generated high-affinity monoclonal antibodies (MAbs) specific for human SR-BI and showed that they were capable of inhibiting the binding of SR-BI to sE2 and blocking HCVcc infection of human hepatoma cells (15). The HDL-induced enhancement of infection had no impact on the ability of the anti-SR-BI MAbs to block HCV infection, and the antibodies were effective in counteracting HCV infection even in the absence of lipoproteins. These data demonstrated that SR-BI participates in the HCV infection process as an entry receptor by directly interacting with viral glycoproteins. Here we have used one of the anti-SR-BI MAbs to show that SR-BI participates in an early step of HCV infection. By assays of binding of sE2 to SR-BI molecules from different species and to SR-BI mutants, we identified species-specific SR-BI protein residues that are required for sE2 binding. The functional significance of these observations was confirmed by the finding that SR-BI mutants with reduced binding to sE2 were also impaired in their ability to restore the infectivity of an SR-BI-knocked-down Huh-7.5 cell line. Finally, we demonstrated that SR-BI mutants with impaired sE2 binding can still form oligomeric structures and that they can bind the physiological ligand HDL and mediate cholesterol efflux, suggesting that distinct protein determinants are responsible for the interaction with HDL and the HCV particle.  相似文献   

19.
Little is known about the structure of the envelope glycoproteins of hepatitis C virus (HCV). To identify new regions essential for the function of these glycoproteins, we generated HCV pseudoparticles (HCVpp) containing HCV envelope glycoproteins, E1 and E2, from different genotypes in order to detect intergenotypic incompatibilities between these two proteins. Several genotype combinations were nonfunctional for HCV entry. Of interest, a combination of E1 from genotype 2a and E2 from genotype 1a was nonfunctional in the HCVpp system. We therefore used this nonfunctional complex and the recently described structural model of E2 to identify new functional regions in E2 by exchanging protein regions between these two genotypes. The functionality of these chimeric envelope proteins in the HCVpp system and/or the cell-cultured infectious virus (HCVcc) was analyzed. We showed that the intergenotypic variable region (IgVR), hypervariable region 2 (HVR2), and another segment in domain II play a role in E1E2 assembly. We also demonstrated intradomain interactions within domain I. Importantly, we also identified a segment (amino acids [aa] 705 to 715 [segment 705-715]) in the stem region of E2, which is essential for HCVcc entry. Circular dichroism and nuclear magnetic resonance structural analyses of the synthetic peptide E2-SC containing this segment revealed the presence of a central amphipathic helix, which likely folds upon membrane binding. Due to its location in the stem region, segment 705-715 is likely involved in the reorganization of the glycoprotein complexes taking place during the fusion process. In conclusion, our study highlights new functional and structural regions in HCV envelope glycoprotein E2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号