首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Tremella fuciformis is one of higher basidiomycetes. Its basidiospore can reproduce yeast-like conidia, also called the blastospore by budding. The yeast-like conidia of T. fuciformis is monokaryotic and easy to culture by submerged fermentation similar to yeast. So it is a good recipient cell for exogenous gene expression. In this study, two expression vectors pGlg-gfp containing gpd-Gl promoter and gfp gene and pGlg-hph containing gpd-Gl promoter and hph gene were constructed. The lowest sensitive concentration of hygromycin for the blastospore was determined on three types of media. Our ex- periments showed that the lowest sensitive concentration of hygromycin for the blastospore was 5 μg/mL on MA medium. The intact blastospores were transformed with the expression vector pGlg-hph by electroporation. The putative transformants were obtained by the MA selective medium. Experi- mental results showed that the most effective parameters for the electroporation of intact blastospores were obtained by using STM buffer, 1.0×108 cells/mL of blastospores, 200 μL in transformation volume, 6 μg plasmid, 2.0 kV/cm of electric pulse voltage, stillness culturing on MB liquid medium for 48 h after electroporation. In these transformation conditions, the efficiency reached 277 colonies/μg DNA. Co-transformation of plasmid pGlg-gfp and pGlg-hph with ratio of 1:1 was performed by electroporation with the optimal parameters. The putative co-transformants were obtained by the MA selective medium. Eight randomly selected colonies from the vast putative co-transformants were analyzed by PCR de- tection and Southern blotting. The experiments showed that the gfp was integrated into the genomes of three transformants. The co-transformation efficiency was 37.5%. Green fluorescence was observed under laser scanning confocal microscope in these gfp positive transformants. This indicates that the exogenous gfp can be expressed effectively in the yeast-like conidia of T. fuciformis.  相似文献   

2.
In this study, the nematode-trapping fungus, Monacrosporium sphaeroides, was transformed with a plasmid harboring the hygromycin B phosphotransferase gene, via restriction enzyme-mediated integration (REMI). Frequencies of up to 94 transformants microg(-1) per linearized plasmid DNA were obtained by optimizing the PEG concentration, as well as the category and quantity of the added restriction enzyme. 90% of the transformants were determined to be stable for drug resistance when 20 randomly selected transformants were tested. Southern analyses revealed that the transforming DNA was integrated into the M. sphaeroides genome either with or without rearrangement. Five mitotic stable mutant strains were obtained using this approach, all of which had been altered with regard to sporulation capacity and pathogenicity toward nematodes. Southern blot analyses of the five mutants revealed that foreign plasmid DNA had integrated into the genome. Three of the mutants, Tms2316, Tms3583 and Tms1536, exhibited integration at a single location, whereas the remaining two, Tms32 and Tms1913, manifested integration at double or multiple locations. Our results suggest that the transformation of M. sphaeroides via REMI will facilitate insertional mutagenesis, the functional analysis of a variety of genes, and the tagging or cloning of genes of interest.  相似文献   

3.
Ophiobolin A is sesterterpenoid-type phytotoxin and may be an important candidate for development of new crop protection and pharmaceutical products. The restriction enzyme-mediated integration (REMI) method was used to introduce the plasmid pSH75 into the ophiobolin A-producing filamentous fungus Bipolaris eleusines. A total of 323 stable transformants were obtained, all of which were capable of growing on potato-dextrose agar medium containing 200?μg?mL(-1) hygromycin B. The transformation frequency was about 4-5 transformants?μg(-1) plasmid DNA. An ophibolin A-deficient transformant (B014) was assessed and the presence of the hph gene in this transformant was confirmed by PCR. The cell-free cultural filtrates of this transformant showed significantly less inhibition on mycelial growth of the fungal pathogen Rhizoctoni solani but little effect on barnyard grass as opposed to that of the wild-type B.?eleusines. There was no detectable amount of ophiobolin A in B014 samples measured with HPLC. This research suggests REMI as a potential approach for improving the production of ophiobolin A by B.?eleusines via genetic engineering to upregulate certain genes responsible for desired biosynthetic pathways.  相似文献   

4.
The REMI method was used to introduce the plasmid pV2 harboring the hygromycin B phosphotransferase (hph) gene controlled by the Aspergillus nidulans trpC promoter and the trpC terminator into a taxol-producing endophytic fungus BT2. REMI transformation yielded stable transformants capable of continuing to grow on PDA medium containing 125 mug mL(-1) hygromycin B. The transformation efficiency was about 5-6 transformants mug(-1) plasmid DNA. The presence of hph gene in transformants was confirmed by PCR and Southern blot analyses. To the authors' knowledge, this is the first report on the transformation of taxol-producing endophytic fungi by the REMI technique. This study provides an effective approach for improving taxol production of endophytic fungi by the genetic engineering of taxol biosynthetic pathway genes in the future.  相似文献   

5.
Restriction enzyme mediated integration (REMI) and Agrobacterium-mediated transformation (ATMT) were used to transform protoplasts or germinated conidia of the mycoparasite Coniothyrium minitans to hygromycin resistance. Using REMI, up to 32 transformants mug DNA(-1) were obtained, while 37.8 transformants 5 x 10(5) germlings(-1) were obtained using ATMT. Single-copy integrations occurred in 8% and 40% of REMI and ATMT transformants, respectively. A novel microtitre plate-based test was developed to expedite screening of 4000 REMI and ATMT C. minitans transformants. Nine pathogenicity mutants that displayed reduced or no pathogenicity on sclerotia of Sclerotinia sclerotiorum were identified.  相似文献   

6.
We cloned a gene for the iron sulfur protein (Ip) subunit from an edible mushroom, Lentinula edodes, and introduced a point mutation that confers carboxin resistance into it. The mutant gene successfully transformed L. edodes with high efficiency (9 transformants/2.5 microg vector DNA). Restriction enzyme-mediated integration (REMI) increased the transformation efficiency by about two-fold.  相似文献   

7.
We have investigated transformation with heterologous DNA as a method for insertional mutagenesis of Aspergillus fumigatus. Two methods, polyethylene glycol-mediated transformation of protoplasts and electroporation of germinating spores, were used to establish conditions leading to single-copy integration of transforming DNA at different genomic sites. We have assessed the effect of restriction enzyme-mediated integration (REMI) for both methods. Non-REMI protoplast transformation led to integration of multiple copies of transforming DNA in the majority of transformants. Results of REMI with protoplast transformation varied depending on the enzyme used. Low concentrations of several restriction enzymes stimulated transformation, but of ten enzymes investigated only REMI with XhoI and KpnI resulted in single-copy integration of transforming DNA for the majority of transformants. For protoplast transformation with XhoI- or KpnI-based REMI, 50% and 76% of insertions, respectively, were due to integrations at a genomic enzyme site corresponding to the enzyme used for REMI. Electroporation of spores without addition of restriction enzyme resulted in a high transformation efficiency, with up to 67% of transformants containing a single copy of transforming DNA. In contrast to protoplast transformation, electroporation of spores in the presence of a restriction enzyme did not improve transformation efficiency or lead to insertion at genomic restriction sites. Southern analysis indicated that for both protoplast transformation with REMI using KpnI or XhoI and for electroporation of spores without addition of restriction enzymes, transforming DNA inserted at different genomic sites in a high proportion of transformants. Received: 6 March 1998 / Accepted: 25 May 1998  相似文献   

8.
We have investigated transformation with heterologous DNA as a method for insertional mutagenesis of Aspergillus fumigatus. Two methods, polyethylene glycol-mediated transformation of protoplasts and electroporation of germinating spores, were used to establish conditions leading to single-copy integration of transforming DNA at different genomic sites. We have assessed the effect of restriction enzyme-mediated integration (REMI) for both methods. Non-REMI protoplast transformation led to integration of multiple copies of transforming DNA in the majority of transformants. Results of REMI with protoplast transformation varied depending on the enzyme used. Low concentrations of several restriction enzymes stimulated transformation, but of ten enzymes investigated only REMI with XhoI and KpnI resulted in single-copy integration of transforming DNA for the majority of transformants. For protoplast transformation with XhoI- or KpnI-based REMI, 50% and 76% of insertions, respectively, were due to integrations at a genomic enzyme site corresponding to the enzyme used for REMI. Electroporation of spores without addition of restriction enzyme resulted in a high transformation efficiency, with up to 67% of transformants containing a single copy of transforming DNA. In contrast to protoplast transformation, electroporation of spores in the presence of a restriction enzyme did not improve transformation efficiency or lead to insertion at genomic restriction sites. Southern analysis indicated that for both protoplast transformation with REMI using KpnI or XhoI and for electroporation of spores without addition of restriction enzymes, transforming DNA inserted at different genomic sites in a high proportion of transformants.  相似文献   

9.
Pleurotus eryngii was transformed via restriction enzyme-mediated integration. In order to construct the transformation plasmid, the enhanced cyan fluorescent protein (ECFP) gene was ligated next to the gpd promoter of the plasmid pAN7-1. Transformation was facilitated via the heat treatment of a transformation mixture containing 1 μg of the HindIII-digested plasmid DNA and 106 mushroom protoplasts in 40% polyethyleneglycol solution, resulting in 10–40 hygromycin-resistant transformants. Successful transformation was evidenced by PCR, Southern blot, and confocal fluorescence microscopic analyses on the selected transformants. To date, this is the first report on the transformation of P. eryngii by REMI technique.  相似文献   

10.
We have developed a restriction enzyme-mediated insertional mutagenesis (REMI) system for the maize pathogen Colletotrichum graminicola. In this report, we demonstrate the utility of a REMI-based mutagenesis approach to identify novel pathogenicity genes. Use of REMI increased transformation efficiency by as much as 27-fold over transformations with linearized plasmid alone. Ninety-nine transformants were examined by Southern analysis, and 51% contained simple integrations consisting of one copy of the vector integrated at a single site in the genome. All appeared to have a plasmid integration at a unique site. Sequencing across the integration sites of six transformants demonstrated that in all cases the plasmid integration occurred at the corresponding restriction enzyme-recognition site. We used an in vitro bioassay to identify two pathogenicity mutants among 660 transformants. Genomic DNA flanking the plasmid integration sites was used to identify corresponding cosmids in a wild-type genomic library. The pathogenicity of one of the mutants was restored when it was transformed with the cosmids.  相似文献   

11.
We have used a plasmid containing the argB gene to transform an Aspergillus nidulansargB-deleted strain in the presence of restriction enzymes and show a 20- to 60-fold increase in transformation frequency via restriction enzyme-mediated integration (REMI). This procedure was used to try to tag new genes involved in the asexual development of this fungus. More than 2000 transformants isolated following electroporation of conidia and ~3700 transformants recovered following protoplast fusion were screened for sporulation defects. Unexpectedly, developmental mutants were obtained only when the protoplast fusion approach was used. Southern blot analysis of these mutants, and of randomly selected transformants obtained by electroporation, was consistent with the occurrence of single plasmid integration events in 33 and 65% of the cases, respectively. The argB marker was shown to be tightly linked to the mutant phenotype in only 62% of the mutants analyzed by sexual crosses. Partial DNA sequencing of a tagged gene, whose mutation delays asexual sporulation and results in a fluffy phenotype, showed no homology to previously reported sequences. Our results indicate that REMI can be used in A.?nidulans to increase the transformation frequency and illustrate the advantages and potential problems when using REMI to tag genes of interest in this and other fungi.  相似文献   

12.
For the first time gene cloning systems have been developed for Amycolatopsis japonicum. Direct transformation, polyethyleneglycol (PEG) induced protoplast transformation and conjugal transfer was established for A. japonicum MG417-CF17, the ethylenediaminedisuccinic acid (EDDS) producer. The direct transformation procedure was modified to introduce DNA. The most important parameter for an efficient DNA uptake was the age of the culture. Using of mycelium from 36-h old cultures resulted in the highest transformation frequencies. Further, conditions for transformation of A. japonicum protoplasts were established. The efficiency of transformation depended mainly on the source of PEG and the components of the regeneration agar. The replicative plasmid pULVK2A carrying pA-rep and the apramycin resistance gene was transferred into the EDDS producer with a frequency of 0.38 colonies microg(-1) DNA by using the direct transformation procedure and with a frequency of 0.56 colonies microg(-1) DNA by using the PEG induced protoplast transformation. The plasmid was genetically stable, and could easily be reisolated from A. japonicum. We also demonstrated that conjugal transfer of the plasmid pSET152 from Escherichia coli ET12567 (pUB307) to Amycolatopsis spores is possible. The plasmid pSET152 integrated in the A. japonicum chromosome. A titre of 2.4 x 10(-4) exconjugants per recipient was obtained.  相似文献   

13.
运用基因组步行方法克隆盐藻肌动蛋白基因5′上游调控序列,发现相对于ATG上游-573和-424bp的位置上分别有75bp长的两个重复序列。没有典型的TATA盒,但有两个TATA样结构、一个CCAAT结构和一个与GCTC(G/C)AAGGC一致的序列。以700bp的盐藻肌动蛋白基因启动子区序列驱动bar基因的表达作为转化盐藻的筛选标记。转化的藻细胞暗光恢复24h后,在含0.5μg/mL除草剂的培养基中常规培养生长1周,然后将细胞平铺于含0.5μg/mL除草剂的固体培养基上继续筛选培养。约20d后从固体培养板上挑选出5个藻落并作了进一步培养和分析。结果显示,5个转化藻中携带bar嵌合基因的整合位点均位于核基因组内。Southern blotting分析表明,仅有一个转化藻整合单拷贝的bar基因,而另外4个转化藻株则包含多个拷贝bar基因片段,提示盐藻核基因转化主要是外源基因的随机整合,外源基因在转化盐藻中的整合拷贝数并不影响其除草剂抗性。RT-PCR方法证明了bar基因在转化藻中的转录。5个转化藻在含除草剂的液体培养基中维持生长了至少7个月,表明核基因转化的稳定性。  相似文献   

14.
An improved DNA-mediated transformation system for nematode-trapping fungus Arthrobotrys oligospora based on hygromycin B resistance was developed. The transformation frequency varied between 34 and 175 transformants per μg linearized DNA and 93% of the transformants were stable for drug resistance when tested 100 randomly selected transformants. More than 2000 transformants were obtained by transformation of the fungus with pBChygro in the presence of HindIII and among them, one, YMF1.00110, which lost its ability of forming predacious structure, was isolated. Southern analysis showed that the plasmid DNA had integrated into the genome of all tested transformants (including YMF 1.00110) except one. The transformant tagged with hph gene could be re-isolated and quantified from dung samples based on the resistance of hygromycin B. All the results suggested that the method of restriction enzyme mediated integration (REMI) should facilitate not only the insertional mutagenesis for tagging and analysis genes of interest but also the ecological investigation of tagged fungi in a given environment.  相似文献   

15.
Factors affecting the PEG-mediated transformation and electrotransformation of Streptomyces avermitilis protoplasts, an industrial avermectin high-producer, were evaluated. The maximum protoplast transformation efficiency under optimum conditions with PEG was 3 x 106 transformants per microg plasmid pIJ702 DNA. The efficiency of electrotransformation with the same plasmid the intact cells grown in medium with 0.5 mmol/L CaCl2, suspended in buffer with 0.5 mol/L sucrose +1 mmol/L MgCl2, and pulsed at an electric field strength of 10 kV/cm, 800 ohms, 25 microF, was of 2 x 10(3) transformants per microg DNA. When the cells were electroporated after mild lysozyme-treatment, the efficiency was up to 10(4) transformants per microg DNA. Electroporation of protoplasts and germlings had a lower efficiency (10(2) transformants per microg DNA). We report that electroporation under optimum conditions can be used for direct transfer of nonconjugative plasmid pIJ699 between two different Streptomyces species, S. avermitilis and S. lividans.  相似文献   

16.
We have used a plasmid containing the argB gene to transform an Aspergillus nidulansargB-deleted strain in the presence of restriction enzymes and show a 20- to 60-fold increase in transformation frequency via restriction enzyme-mediated integration (REMI). This procedure was used to try to tag new genes involved in the asexual development of this fungus. More than 2000 transformants isolated following electroporation of conidia and ∼3700 transformants recovered following protoplast fusion were screened for sporulation defects. Unexpectedly, developmental mutants were obtained only when the protoplast fusion approach was used. Southern blot analysis of these mutants, and of randomly selected transformants obtained by electroporation, was consistent with the occurrence of single plasmid integration events in 33 and 65% of the cases, respectively. The argB marker was shown to be tightly linked to the mutant phenotype in only 62% of the mutants analyzed by sexual crosses. Partial DNA sequencing of a tagged gene, whose mutation delays asexual sporulation and results in a fluffy phenotype, showed no homology to previously reported sequences. Our results indicate that REMI can be used in A. nidulans to increase the transformation frequency and illustrate the advantages and potential problems when using REMI to tag genes of interest in this and other fungi. Received: 22 August 1997 / Accepted: 20 November 1997  相似文献   

17.
Restriction enzyme-mediated DNA integration (REMI) has recently received attention as a new technique for the generation of mutants by transformation in fungi. Here we analyse this method in the basidiomycete Coprinus cinereus using the homologous pab1 gene as a selectable marker and the restriction enzymes BamHI, EcoRI and PstI. Addition of restriction enzymes to transformation mixtures results in an earlier appearance of transformants and influences transformation rates in an enzyme- and concentration-dependent manner. Low concentrations of restriction enzyme result in increased numbers of transformants compared to no addition of enzymes. Transformation rates decrease with higher enzyme concentrations. If protoplasts are made from cells stored in the cold, the transformation rates drop drastically even in the presence of low amounts of enzyme. In several transformants, plasmid integration directly correlated with the action of restriction enzyme at random chromosomal restriction sites. In some cases, restriction enzymes appear to reduce the number of integration events per transformant. Simultaneously, mutation rates can be enhanced due to the presence of restriction enzymes. Although restriction enzymes clearly promote plasmid integration into the host genome they also have cytotoxic and possibly mutagenic effects that result from processes other than plasmid integration. In consequence, for any given enzyme used in REMI mutagenesis, the enzyme concentration that gives the highest number of transformants must be defined experimentally. Such optimal transformation conditions should give the highest probability of obtaining mutations caused by a single restriction enzyme-mediated integration of the selection marker.  相似文献   

18.
A novel system was developed for efficient transformation of the fungal biocontrol agent Beauveria bassiana. Competent blastospores were prepared and stored in LiAc- and glycerol-inclusive suspension at −76 °C for sequential use in transformation. The system was successfully applied to integrating phosphinothricin resistance gene bar and enhanced green fluorescence protein gene egfp into B. bassiana via blastospore absorption of a plasmid vectoring bar and egfp. A frequency of 24 transformants per microgram of DNA was achieved. The blastospore-based transformation system has proven to be very convenient and would be highly potential for use in genetic manipulation of B. bassiana and other filamentous species.  相似文献   

19.
A reliable DNA-mediated transformation system has been developed for Pseudozyma flocculosa, a fungus that is antagonistic to powdery-mildew fungi. Plasmids harboring various selectable markers under the control of different promoters were tested. Molecular analyses demonstrated that successful transformation could be achieved using a plasmid that confers resistance to hygromycin B under the control of the Ustilago maydis hsp70 promoter and terminator sequences. On average, 1-40 (mean = 20) transformants were obtained per 10 microg of linearized DNA per 10(8) protoplasts. Southern analysis of the transformants revealed that, in each case, the vector had integrated in multiple tandem copies into the genome of P. flocculosa, and that integration events were random. Pulsed-field gel electrophoresis was employed to separate the genome of P. flocculosa into at least 11 chromosomes with sizes ranging from 0.55 Mb to 2.9 Mb. Hybridization with the plasmid indicated that integration of vector DNA had occurred in one to several chromosomes depending on the transformant examined.  相似文献   

20.
Abstract An optimized polyethylene glycol (PEG) method of transformation was developed for Methanococcus maripaludis using the pKAS102 integration vector. The frequency of transformation with 0.8 μg of plasmid and 3×109 cells was 4.8×10−5 transformants cfu−1, or 1.8×105 transformants μg−1, which was four orders of magnitude greater than with the natural transformation method. A Pst I restriction activity in M. maripaludis was also identified. Methylation of the plasmid with Pst I methylase increased the methanococcal transformation frequency at least four-fold. Also, chromosomal DNA from M. maripaludis was resistant to digestion by the Pst I endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号