首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abscisic acid (ABA) has been implicated in determining the outcome of interactions between many plants and their pathogens. We had previously shown that increased concentrations of ABA within leaves of Arabidopsis induced susceptibility towards an avirulent strain of Pseudomonas syringae pathovar (pv.) tomato. We now show that ABA induces susceptibility via suppression of the accumulation of components crucial for a resistance response. Lignin and salicylic acid concentrations in leaves were increased during a resistant interaction but reduced when plants were treated with ABA. The reduction in lignin and salicylic acid production was independent of the development of the hypersensitive response (HR), indicating that, in this host-pathogen system, HR is not required for resistance. Genome-wide gene expression analysis using microarrays showed that treatment with ABA suppressed the expression of many defence-related genes, including those important for phenylpropanoid biosynthesis and those encoding resistance-related proteins. Together, these results show that resistance induction in Arabidopsis to an avirulent strain of P. syringae pv. tomato is regulated by ABA. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance (SAR), ISR is not associated with systemic changes in the expression of genes encoding pathogenesis-related (PR) proteins. To identify genes that are specifically expressed in response to colonization of the roots by ISR-inducing Pseudomonas fluorescens WCS417r bacteria, we screened a collection of Arabidopsis enhancer trap and gene trap lines containing a transposable element of the Ac/Ds system and the GUS reporter gene. We identified an enhancer trap line (WET121) that specifically showed GUS activity in the root vascular bundle upon colonization of the roots by WCS417r. Fluorescent Pseudomonas spp. strains P. fluorescens WCS374r and P. putida WCS358r triggered a similar expression pattern, whereas ISR-non-inducing Escherichia coli bacteria did not. Exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) mimicked the rhizobacteria-induced GUS expression pattern in the root vascular bundle, whereas methyl jasmonic acid and salicylic acid did not, indicating that the Ds element in WET121 is inserted in the vicinity of an ethylene-responsive gene. Analysis of the expression of the genes in the close vicinity of the Ds element revealed AtTLP1 as the gene responsible for the in cis activation of the GUS reporter gene in the root vascular bundle. AtTLP1 encodes a thaumatin-like protein that belongs to the PR-5 family of PR proteins, some of which possess antimicrobial properties. AtTLP1 knockout mutant plants showed normal levels of WCS417r-mediated ISR against the bacterial leaf pathogen Pseudomonas syringae pv. tomato DC3000, suggesting that expression of AtTLP1 in the roots is not required for systemic expression of ISR in the leaves. Together, these results indicate that induction of AtTLP1 is a local response of Arabidopsis roots to colonization by non-pathogenic fluorescent Pseudomonas spp. and is unlikely to play a role in systemic resistance.  相似文献   

3.
The effects of Chinese cabbage (Brassica rapa subsp. pekinensis) carrying cry1AC derived from Bacillus thuringiensis (Bt) on leaf bacterial community were examined by analyzing the horizontal transfer of trans-gene fragments from plants to bacteria. The effect of plant pathogenic bacteria on the gene transfer was also examined using Pseudomonas syringae pathovar. maculicola. The frequency of hygromycin-resistant bacteria did not alter in Bt leaves, though slight increase was observed in Pseudomonas-infected Bt leaves with no statistical significance. The analysis of bacterial community profiles using the denaturing gradient gel electrophoresis (DGGE) fingerprinting indicated that there were slight differences between Bt and control Chinese cabbage, and also that infected tissues were dominated by P. syringae pv. maculicola. However, the cultured bacterial pools were not found to contain any transgene fragments. Thus, no direct evidence of immediate gene transfer from plant to bacteria or acquisition of hygromycin resistance could be observed. Still, long-term monitoring on the possibility of gene transfer is necessary to correctly assess the environmental effects of the Bt crop on bacteria.  相似文献   

4.
Sauerbrunn N  Schlaich NL 《Planta》2004,218(4):552-561
Using a cDNA-array we identified expressed sequence tag 163B24T7 as rapidly up-regulated in Arabidopsis thaliana (L.) Heynh. after pathogen exposure. Detailed expression analysis revealed that the corresponding gene is up-regulated not only after exposure to avirulent Pseudomonas syringae pv. tomato but also to virulent strains. This up-regulation is dependent on functional salicylic acid defence-signalling pathways. Moreover, we found the gene was circadian-regulated, showing peaks of expression at the end of the day. Using plants overexpressing the clock component CCA1, we showed that the PCC1 gene is regulated by the inner clock of Arabidopsis. Accordingly, we named the gene PCC1, for pathogen and circadian controlled. PCC1 is a member of a novel family of six small polypeptides in Arabidopsis. A functional role for PCC1 in plant defence was demonstrated since plants overexpressing PCC1 are resistant against normally virulent oomycetes. Thus, PCC1 demonstrates a potential interrelationship between pathogen and circadian signalling pathways.Abbreviations cfu Colony-forming units - EST Expressed sequence tag - Pst Pseudomonas syringae pv. tomato - TAIR The Arabidopsis information resource  相似文献   

5.
Autophagy can be regarded as a protection mechanism to restrict programmed cell death (PCD) induced by pathogen infection during plant innate immunity in the early stages. Autophagy related 5 (ATG5) plays an important role in autophagy in Arabidopsis. We investigated the function of ATG5 in Arabidopsis in the hypersensitive response (HR)-PCD elicited by both virulent and avirulent strains of Pseudomonas syringae pv. tomato bacteria DC3000. Results show that ATG5 plays a vital role in limiting HR induced by P. syringae strains and colocalizes with autophagic bodies during the early phase of bacterial infection. In addition, the P. syringae-induced response is mediated by the salicylic acid (SA) signaling pathway. In summary, ATG5 is required for limiting HR-PCD induced in Arabidopsis by P. syringae strains and may be mediated by SA signaling.  相似文献   

6.
Zhao J  Barkla BJ  Marshall J  Pittman JK  Hirschi KD 《Planta》2008,227(3):659-669
Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.  相似文献   

7.
The over-expression of Arabidopsis CAX1 and CAX2 causes transgenic tomato plants to reveal severe Ca2+ deficiency-like symptoms such as tip-burn and/or blossom end rot, despite there being sufficient Ca2+ in each plant part. To correct the symptoms and to moderately enhance the calcium level, a worldwide vegetable tomato was genetically engineered using a modified Arabidopsis cation/H+ antiporter sCAX2A, a mutant form of Arabidopsis CAX2. Compared with the wild-type, the sCAX2A-expressing tomato plants demonstrated elevated Ca2+ levels in the fruits with almost no changes in the levels of Mn2+, Cu2+, and Fe2+. Moreover, expression of sCAX2A in tomato plants did not show any significant alterations in their morphological phenotypes. Unlike 35S::sCAX1 construct, sCAX2A antiporter gene driven by 35S promoter can be a valuable tool for enriching Ca2+ contents in the tomato fruit without additional accumulation of the undesirable cations.  相似文献   

8.
In order to understand the mode of action of taxonomically related Pseudomonas syringae pathovar strains that infect pea, tomato, and soya bean, we examined their extracellular polysaccharides (EPS). Maximum production of polysaccharide in shake culture of these pathogens was observed between 24 and 60 h. P. syringae pv. pisi 519, the bacterial blight pathogen of pea, produced a higher amount of polysaccharide (34.87 g/mL) at 60 h compared with 32.67 g/mL produced by P. syringae pv. glycinea NCPPB 1783, the bacterial blight pathogen of soya bean, and 30.03 g/mL produced by P. syringae pv. tomato NCPPB 269, the bacterial speck pathogen of tomato. EPS produced by P. syringae pv. pisi 519, P. syringae pv. tomato NCPPB 269, and P. syringae pv. glycinea NCPPB 1783 was characterized with infrared (FTIR), nuclear magnetic resonance (NMR), high performance thin layer chromatography, (HPTLC), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. HPTLC profiles revealed the presence of glucose and glucuronic acid in all bacteria and mannose only in P. syringae pv. tomato. Molecular mass of EPS of P. syringae pv. pisi (m/z 933.8), P. syringae pv. tomato (m/z 950.4), and P. syringae pv. glycinea (m/z 933.5) was confirmed by MALDI-TOF mass spectrometry.  相似文献   

9.
Zinc is essential but toxic in excess. A bacterial metallothionein, SmtA from Synechococcus PCC 7942, has high affinity for Zn2+ and the intracellular exclusively handling of Zn2+. In this study, we report a functional analysis of SmtA in Arabidopsis thaliana and its response to zinc stress. After high zinc stress, the transgenic plants over-expressing SmtA showed higher survival rate than the wild type. We also found that over-expression of SmtA in Arabidopsis increased the activities of SOD and POD, and enhanced the tolerance to zinc stress. Together, our results indicate that SmtA may play an important role in the response to zinc stress in Arabidopsis.  相似文献   

10.
A psychrophilic bacterium, Pseudomonas syringae (Lz4W) from Antarctica, was used as a model system to establish a correlation, if any, between thermal adaptation, trans-fatty acid content and membrane fluidity. In addition, attempts were made to clone and sequence the cti gene of P. syringae (Lz4W) so as to establish its characteristics with respect to the cti of other Pseudomonas spp. and also to in vitro mutagenize the cti gene so as to generate a cti null mutant. The bacterium showed increased proportion of saturated and trans-monounsaturated fatty acids when grown at 28°C compared to cells grown at 5°C, and the membrane fluidity decreased with growth temperature. In the mutant, the trans-fatty acid was not synthesized, and the membrane fluidity also decreased with growth temperature, but the decrease was not to the extent that was observed in the wild-type cells. Thus, it would appear that synthesis of trans-fatty acid and modulation of membrane fluidity to levels comparable to the wild-type cells is essential for growth at higher temperatures since the mutant exhibits growth arrest at 28°C. In fact, the cti null mutant-complemented strain of P. syringae (Lz4W-C30b) that was capable of synthesizing the trans-fatty acid was indeed capable of growth at 28°C, thus confirming the above contention. The cti gene of P. syringae (Lz4W) that was cloned and sequenced exhibited high sequence identity with the cti of other Pseudomonas spp. and exhibited all the conserved features.  相似文献   

11.
On the basis of the results of gene chip analysis of the salt-tolerant wheat mutant RH8706-49 under conditions of salt stress, we identified and cloned an unknown salt-induced gene TaST (Triticum aestivum salt-tolerant). Real-time quantitative PCR analysis showed that the expression of the gene was induced by salt stress. Transgenic Arabidopsis plants overexpressing the TaST gene showed higher salt tolerance than the wild-type controls. Subcellular localization studies revealed that the protein encoded by this gene was in the nucleus. In comparison with wild-type controls, transgenic Arabidopsis plants accumulated more Ca2+, soluble sugar, and proline and less Na+ under salt stress. Real-time quantitative PCR analysis showed that Arabidopsis plants overexpressing TaST also showed increased expression of many stress-related genes. All these findings indicated that TaST can enhance the salt tolerance of transgenic Arabidopsis plants.  相似文献   

12.
Lee SC  Hwang IS  Hwang BK 《Planta》2011,234(6):1111-1125
Proteomics facilitates our understanding of cellular processes and network functions in the plant defense response during abiotic and biotic stresses. Here, we demonstrate that the ectopic expression of the Capsicum annuum antimicrobial protein CaAMP1 gene in Arabidopsis thaliana confers enhanced tolerance to methyl viologen (MV)-induced oxidative stress, which is accompanied by lower levels of lipid peroxidation. Quantitative comparative proteome analyses using two-dimensional gel electrophoresis coupled with mass spectrometry identified some of the oxidative stress- and disease-related proteins that are differentially regulated by CaAMP1 overexpression in Arabidopsis leaves. Antioxidant- and defense-related proteins, such as 2-cys peroxiredoxin, l-ascorbate peroxidase, peroxiredoxin, glutathione S-transferase and copper homeostasis factor, were up-regulated in the CaAMP1 transgenic leaf tissues. In contrast, GSH-dependent dehydroascorbate reductase and WD-40 repeat family protein were down-regulated by CaAMP1 overexpression. In addition, CaAMP1 overexpression enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 infection and also H2O2 accumulation in Arabidopsis. The identified antioxidant- and defense-related genes were differentially expressed during MV-induced oxidative stress and Pst DC3000 infection. Taken together, we conclude that CaAMP1 overexpression can regulate the differential expression of defense-related proteins in response to environmental stresses to maintain reactive oxygen species (ROS) homeostasis.  相似文献   

13.
Yeast suffers from a variety of environmental stresses, such as osmotic pressure and ethanol produced during fermentation. Since calcium ions are protective for high concentrations of ethanol, we investigated whether Ca2+ flux occurs in response to ethanol stress. We find that exposure of yeast to ethanol induces a rise in the cytoplasmic concentration of Ca2+. The response is enhanced in cells shifted to high-osmotic media containing proline, galactose, sorbitol, or mannitol. Suspension of cells in proline and galactose-containing media increases the Ca2+ levels in the cytoplasm independent of ethanol exposure. The enhanced ability for ethanol to induce Ca2+ flux after the hypertonic shift is transient, decreasing rapidly over a period of seconds to minutes. There is partial recovery of the response after zymolyase treatment, suggesting that cell wall integrity affects the ethanol-induced Ca2+ flux. Acetate inhibits the Ca2+ accumulation elicited by the ethanol/osmotic stress. The Ca2+ flux is primarily via the Cch1 Ca2+ influx channel because strains carrying deletions of the cch1 and mid1 genes show greater than 90% reduction in Ca2+ flux. Furthermore, a functional Cch1 channel reduced growth inhibition by ethanol.  相似文献   

14.
15.
In Arabidopsis, NPR1 (non-expressor of pathogenesis related genes 1, AtNPR1) functions downstream of salicylic acid (SA) and modulates the SA mediated systemic acquired resistance. It is also involved in a cross talk with the jasmonate pathway that is essential for resistance against herbivores and necrotrophic pathogens. Overexpression of AtNPR1 in transgenic plants resulted in enhanced disease resistance. Recently, tobacco transgenic plants expressing AtNPR1 were shown to be tolerant to the early instars of Spodoptera litura (Meur et al., Physiol Plant 133:765–775, 2008). In this communication, we show that the heterologous expression of AtNPR1 in tobacco has also enhanced the oxidative stress tolerance. The transgenic plants exhibited enhanced tolerance to the treatment with methyl viologen. This tolerance was associated with the constitutive upregulation of PR1, PR2 (glucanase), PR5 (thaumatin like protein), ascorbate peroxidase (APX) and Cu2+/Zn2+ superoxide dismutase (SOD). This is the first demonstration of the novel function of heterologous expression of AtNPR1 in oxidative stress tolerance in transgenic tobacco.  相似文献   

16.
Wu S  Yu Z  Wang F  Li W  Ye C  Li J  Tang J  Ding J  Zhao J  Wang B 《Molecular biotechnology》2007,36(2):102-112
N-methylation of phosphoethanolamine, the committing step in choline (Cho) biosynthesis in plants, is catalyzed by S-adenosyl-l-methionine: phosphoethanolamine N-methyltransferase (PEAMT, EC 2.1.1.103). Herein we report the cloning and characterization of the novel maize phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) using a combination of bioinformatics and a PCR-based allele mining strategy. The cDNA sequence of ZmPEAMT1 gene is 1,806 bp in length and translates a 495 amino acids peptide. The upstream promoter sequence of ZmPEAMT1 were obtained by TAIL-PCR, and contained four kinds of putative cis-acting regulatory elements, including stress-responsive elements, phytohormone-responsive elements, pollen developmental special activation elements, and light-induced signal transduction elements, as well as several other structural features in common with the promoter of rice and Arabidopsis homologies. RT-PCR analysis showed that expression of ZmPEAMT1 was induced by salt stress and suppressed by high temperature. Over-expression of ZmPEAMT1 enhanced the salt tolerance, root length, and silique number in transgenic Arabidopsis. These data indicated that ZmPEAMT1 maybe involved in maize root development and stress resistance, and maybe having a potential application in maize genetic engineering. Note: Nucleotide sequence data are available in GenBank under the following accession numbers: maize (Zea mays, ZmPEAMT1, AY626156; ZmPEAMT2, AY103779); rice (Oryza sativa, OsPEAMT1/Os01g50030, NM_192178; OsPEAMT2/Os05g47540, XM_475841); wheat (Triticum aestivum, TaPEAMT, AY065971); Arabidopsis (Arabidopsis thaliana, AtNMT1/At3g18000, AY091683; AtNMT2/At1g48600, NM_202264; AtNMT3/At1g73600, NM_106018); oilseed rape (Brassica napus, BnPEAMT, AY319479), tomato (Lycopersicon esculentum, AF328858), spinach (Spinacia oleracea, AF237633).  相似文献   

17.
Pectate lyase A (PelA) of Aspergillus nidulans was successfully expressed in Escherichia coli and effectively purified using a Ni2+-nitrilotriacetate-agarose column. Enzyme activity of the recombinant PelA could reach 360 U ml−1 medium. The expressed PelA exhibited its optimum level of activity over the range of pH 7.5–10 at 50°C. Mn2+, Ca2+, Fe2+, Mg2+ and Fe3+ ions stimulated the pectate lyase activity, but Cu2+ and Zn2+ inhibited it. The recombinant PelA had a V max of 77 μmol min−1 mg−1 and an apparent K m of 0.50 mg ml−1 for polygalacturonic acid. Low-esterified pectin was the optimum substrate for the PelA, whereas higher-esterified pectin was hardly cleaved by it. PelA efficiently macerated mung bean hypocotyls and potato tuber tissues into single cells.  相似文献   

18.
The vacuolar sequestration of metals is an important metal tolerance mechanism in plants. The Arabidopsis thaliana vacuolar transporters CAX1 and CAX2 were originally identified in a Saccharomyces cerevisiae suppression screen as Ca2+/H+ antiporters. CAX2 has a low affinity for Ca2+ but can transport other metals including Mn2+ and Cd2+. Here we demonstrate that unlike cax1 mutants, CAX2 insertional mutants caused no discernable morphological phenotypes or alterations in Ca2+/H+ antiport activity. However, cax2 lines exhibited a reduction in vacuolar Mn2+/H+ antiport and, like cax1 mutants, reduced V-type H+-ATPase (V-ATPase) activity. Analysis of a CAX2 promoter -glucoronidase (GUS) reporter gene fusion confirmed that CAX2 was expressed throughout the plant and strongly expressed in flower tissue, vascular tissue and in the apical meristem of young plants. Heterologous expression in yeast identified an N-terminal regulatory region in CAX2, suggesting that Arabidopsis contains multiple cation/H+ antiporters with shared regulatory features. Furthermore, despite significant variations in morphological and biochemical phenotypes, cax1 and cax2 lines both significantly alter V-ATPase activity, hinting at coordinate regulation among transporters driven by H+ gradients and the V-ATPase.  相似文献   

19.
This paper discusses a number of experiments performed, involving the fusion by an electric field of mesophyll protoplasts from Solanum tuberosum cv. Bintje, S. tuberosum dihaploid clones 243, 299 and the wild tuberous disease-resistant species S. bulbocastanum and S. pinnatisectum. Three fusion experiments (S. bulbocastanum + S. tuberosum dihaploid 243, S. pinnatisectum + S. tuberosum cv. Bintje and S. pinnatisectum + S. tuberosum dihaploid 299) yielded 542 calli, the 52 ones of which produced shoots. Obtained regenerants were estimated by the flow-cytometry (FC) and RAPD analysis to determine hybrid plants.The utilisation of the FC as a useful method for detecting somatic hybrids is also discussed in this paper. The combination S. bulbocastanum + S. tuberosum dihaploid 243 led to the creation of eight somatic hybrids, the combination S. pinnatisectum + S. tuberosum cv. Bintje yielded four somatic hybrids and the combination S. pinnatisectum + S. tuberosum dihaploid 299 resulted in no hybrid regenerants. Morphology in vitro, growth vigour and production of tuber-like structures were evaluated in hybrid plants. Plants were transferred in vivo for further estimation (acclimatization, habitus evaluation and tuberization ability).  相似文献   

20.
Coronatine (COR) is a structural and functional analogue of jasmonic acid that might be employed in agriculture to elicit plant resistance against various aggressors. However, the yield of COR is low both in chemosynthesis and biosynthesis, so broad investigation of COR is difficult. Coronatine combines two distinct components: coronafacic acid (CFA) and coronamic acid (CMA). Synthesis of both CMA and CFA is involved in l-isoleucine metabolism, so the objective of this work was to investigate if COR production can be improved by regulating amino acid biosynthesis in P. syringae pv. glycinea. Inhibition of dihydrodipicolinate synthase was achieved by removing the dapA gene via homologous recombination, which resulted in a COR yield by the dapA mutant of about 1.5-fold greater than the wild strain. Thus, regulation of amino acid metabolism is a feasible way to increase COR production, which could be a more effective method than adding substrates into culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号