首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

2.
The in vivo release of endogenous 3,4-dihydroxyphenylethylamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT), and of 5-hydroxytryptamine (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), has been measured in the caudate nucleus of the anesthetized rat. A push-pull cannula was implanted into the brain, and the tissue perfused with artificial CSF or artificial CSF containing 5×10–4 M phenylethylamine. The perfusate was collected and analyzed for DA, 5-HT and their metabolites by high performance liquid chromatography with electrochemical detection (HPLC-ECD). DA was released by phenylethylamine at rates significantly greater than its basal rate. 3-MT and 5-HT were undetectable in perfusates collected under basal conditions, but could be detected readlly during phenylethylamine stimulation. DOPAC, HVA and 5-HIAA concentrations were not significantly affected by phenylethylamine. The results suggest (1) that phenylethylamine may exert its behavioural effects through increased release of both DA and 5-HT, and (2) that in vivo measurements of the acid metabolites alone may not be indicative of the release of the amines.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

3.
Abstract— Noradrenaline (NA), dopamine (DA). 5-hydroxytryptamine (5-HT), 4-hydroxy, 3-methoxy-phenylethylene glycol (MHPG), homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolylacetic acid (5-HIAA) were measured in twenty areas of post-mortem brain from ten psychiatrically and neurologically normal patients. There was a marked difference, which did not appear to be related to sex, medication, cause of death or time between death and dissection, in amine and metabolite concentrations between brains. In the cortex, 5-HT, MHPG, HVA. DOPAC and S-HIAA were approximately even in their distribution; NA and DA could not be detected. In sub-cortical areas there were clear differences in the distribution of the three amines accompanied by less marked differences in the distribution of their respective metabolites.  相似文献   

4.
Major and minor pathways of metabolism in the mammalian CNS result in the formation of 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) and normetanephrine (NMN) from norepinephrine (NE), and homovanillic acid (HVA) and 3-methoxytyramine (3-MT) from dopamine (DA), respectively. The correlational relationships between HVA and 3-MT and between MHPG and NMN in primate CSF and plasma have not been described. These relationships may help to elucidate the usefulness of CSF and plasma metabolites as indices of CNS NE and DA activity. In addition, because NMN is unlikely to cross the blood-brain barrier. CSF NMN concentrations would not be confounded by contributions from plasma, which is a major issue with CSF MHPG. We have obtained repeated samples of plasma and CSF from drug-naive male squirrel monkeys and have measured the concentrations of MHPG, HVA, NMN, and 3-MT to define their correlational relationships. For the NE metabolites, significant correlations were obtained for CSF MHPG and NMN (r = 0.806, p less than 0.001), plasma MHPG and CSF NMN (r = 0.753, p less than 0.001), and plasma and CSF MHPG (r = 0.776, p less than 0.001). These results suggest that CSF and plasma MHPG and CSF NMN may reflect gross changes in whole brain steady-state noradrenergic metabolism. Only a single significant relationship was demonstrated for the DA metabolites, with CSF 3-MT correlating with plasma HVA (r = 0.301, p less than 0.025). The results for the DA metabolites probably reflect regional differences in steady-state brain dopaminergic metabolism.  相似文献   

5.
The determination of neurotransmitters (NTs) and their metabolites facilitates better understanding of complex neurobiology in the central nervous system disorders and has expanding uses in many other fields. We present a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) method for the quantification of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), vanillymandelic acid (VMA), 3-methoxy-4-hydroxy phenylglycol (MHPG), 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), glutamate (Glu), and γ-aminobutyric acid (GABA). The NTs and their metabolites were dansylated and analyzed by an LC gradient on a C18 column on-line with a tandem mass spectrometer. This method exhibited excellent linearity for all of the analytes with regression coefficients higher than 0.99. The lower limit of quantification (LLOQ) values for DA, DOPAC, HVA, NE, VMA, MHPG, 5-HT, 5-HIAA, Glu, and GABA were 0.57, 0.37, 0.35, 0.40, 0.35, 0.91, 0.27, 0.43, 0.65, and 1.62 pmol/ml, respectively. The precision results were expressed as coefficients of variation (CVs), ranging from 1.5% to 13.6% for intraassay and from 2.9% to 13.7% for the interassay. This novel LC-ESI/MS/MS approach is precise, highly sensitive, specific, and sufficiently simple. It can provide an alternative method for the quantification of the NTs and their metabolites in human plasma.  相似文献   

6.
In vivo microdialysis was employed in order to characterize the steady-state kinetics of the turnover of specific dopamine and serotonin metabolites in the rat striatum 48 h after surgery. Inhibitors of monoamine oxidase (MAO; pargyline) and catechol-O-methyltransferase (COMT; Ro 40-7592) were administered, either separately or in conjunction, at doses sufficient to block these enzymes in the CNS. In some experiments, the acid metabolite carrier was blocked with probenecid. Temporal changes were then observed in the efflux of interstitial dopamine, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA). The fractional rate constants for the accumulation or disappearance of the metabolites could be determined after pharmacological blockade of catabolic enzymes or the acid metabolite carrier. Interstitial 5-HIAA was found to be cleared with a half-life of approximately 2 h. After blockade of either MAO or COMT, HVA disappeared with a half-life of 17 min. Experiments employing probenecid suggested that some of the interstitial HVA was cleared by the acid metabolite carrier, the remainder being cleared by a probenecid-insensitive process, possibly conjugation. After MAO inhibition, DOPAC disappeared with an apparent half-life of 11.3 min. The rate of 3-MT accumulation after pargyline indicated that the majority of interstitial HVA (> 95%) is formed from DOPAC rather than 3-MT. The formation of 3-MT from interstitial dopamine, calculated from the accumulation rate of 3-MT after pargyline, appeared to follow first-order kinetics (k = 0.1 min-1).  相似文献   

7.
An improved high-performance liquid chromatographic method with electrochemical detection (HPLC-EC) for the simultaneous determination of 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA) in cerebrospinal fluid (CSF) of humans and nonhuman primates is described. Quantitation is based on the use of an internal standard, 5-fluoro-HVA. Sample preparation consists of mixing an aliquot of CSF with a solution of the internal standard followed by ultrafiltration. The precision of the method is high, with within-run and between-run coefficients of variation of 2-6% and less than 10%, respectively, in the concentration ranges of the metabolites encountered in human lumbar CSF. Accuracy was tested by comparing the present HPLC method with specific gas chromatographic-mass spectrometric (GS-MS) assays for MHPG and HVA and a GC-MS-validated HPLC assay for 5-HIAA: the correlations obtained were 0.968 for MHPG, 0.989 for 5-HIAA, and 0.999 for HVA, with no systematic bias between the methods. The use of ascorbate as a preserving agent for monoamine metabolites in CSF was not found to be necessary when proper care was exercised in sample handling and storage. The analysis of samples with up to 2% ascorbic acid was possible as well, but MHPG had to be assayed separately using an extraction procedure and an alternative internal standard, 3-ethoxy-4-hydroxyphenylglycol.  相似文献   

8.
Previous experimental results, using a new technique whereby the production rates of the neurotransmitter metabolites homovanillic acid (HVA) and 3-methoxy-4-hydroxyphenethyleneglycol (MHPG) by the awake primate brain are determined, have shown a wide variance in metabolite production among both animal and human subjects. These data suggested that either individual subjects differ in the activity of brain dopamine (DA) or norepinephrine (NE) neurons and/or that the activities of these neurons fluctuate over time. For these reasons a series of experiments were performed in which measures of HVA and MHPG production were obtained at three time points in the same animal (monkeys) over a three hour period. It was found that the group mean values for the production of HVA and MHPG by brain were similar for each of the three time points. However, it was also found that marked variations in HVA and MHPG production occur within a single animal over a three hour period. The coefficients of variation for individual animals for HVA ranged from 9.3 to 31.9% and for MHPG from 10.1 to 62.3%. These variations were not correlated with grossly observable changes in behavioral states. Using an analysis of variance it was found that the variance in MHPG production was significantly greater than that for HVA (F = 6.2, p < 0.05) suggesting that brain NE systems are more liable and/or show greater change than do brain DA systems. These data are interpreted as indicating that in the awake, resting primate brain fluctuations in the activities of DA and NE neurons occur, i.e. there is not a steady, invariant production of metabolites but rather they are produced in pulses of varying lengths. This interpretation of the data is generally consistent with electrophysiological studies which indicate that catecholamine neurons fire in bursts which are then followed by silent periods. Finally, in terms of practical application of the V-A difference technique, these data indicate that replicable group mean estimates of brain HVA and MHPG production can be obtained by averaging values from a single time point whereas accurate information about an individual animal will require multiple samplings.Recent reports from this laboratory have described a method whereby a direct measure of the rates of production of neurotransmitter metabolites such as homovanillic acid (HVA), 3-methoxy-4-hydroxyphenethyleneglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) by the awake primate brain can be determined (1, 2, 3, 4). Since the quantities of HVA, MHPG, and probably 5-HIAA in the brain vary as a function of the activity of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) neurons (1, 5, 6, 7, 8), it is likely that these measures of neurotransmitter metabolite production reflect the functional state of brain DA, NE, and 5-HT neuronal systems. The experimental results thus far obtained with this technique have shown a wide variance in the rates of neurotransmitter metabolite production across both animal and human subjects even though the subjects were not in clearly different behavioral or emotional states (1, 2, 4, 9). These data suggested that either individual subjects differ markedly in the activities of brain DA, NE, and 5-HT neurotransmitter systems and/or that the activity of these systems fluctuates markedly over time. For these reasons, experiments were undertaken in which repeated measures of HVA and MHPG production by brain within the same animal were determined over a three hour period. The results of these experiments, which are reported here, indicate that there are marked changes in brain metabolite production which occur within animals. The implications of these findings for our understanding of the functioning of brain neurotransmitter systems and for the practical applications of this technique are discussed.  相似文献   

9.
The fabrication and application of a novel electrochemical detection (ED) method with the functionalized multi-wall carbon nanotubes (MWNTs) chemically modified electrode (CME) for liquid chromatography (LC) were described. The electrochemical behaviors of dopamine (DA) and other monoamine neurotransmitters at the CME were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicated that the CME exhibited efficient electrocatalytic effects on the current responses of monoamine neurotransmitters and their metabolites with high sensitivity, high stability and long-life activity. In LC-ED, DA, norepinephrine (NE), 3-methoxy-4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) had good and stable current responses at the CME. The linear ranges of seven analytes were over four orders of magnitude and the detection limits were 2.5 x 10(-10) mol/l for DA, 2.5 x 10(-10) mol/l for NE, 5.0 x 10(-10) mol/l for MHPG, 3.0 x 10(-10) mol/l for DOPAC, 3.5 x 10(-10) mol/l for 5-HT, 6.0 x 10(-10) mol/l for 5-HIAA, 1.25 x 10(-9) mol/l for HVA. The application of this method coupled with microdialysis sampling for the determination of monoamine neurotransmitters and their metabolites in Parkinsonian patients' cerebrospinal fluid was satisfactory.  相似文献   

10.
J A Nielsen  C A Johnston 《Life sciences》1982,31(25):2847-2856
Assays capable of measuring picomole quantities of dopamine (DA), 5-hydroxytryptamine (5-HT), several of their precursors and metabolites concurrently within 25 minutes were developed utilizing high performance liquid chromatography with electrochemical detection (LCEC). Several parameters of the LCEC were altered in order to separate the compounds while maintaining a short assay time. The final LCEC systems demonstrated biological utility in that the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were detected in rat cerebrospinal fluid; in addition to these compounds, DA and 5-HT were measurable in the striatum, hypothalamus and median eminence of the rat brain. Pargyline decreased the concentrations of DOPAC, HVA and 5-HIAA and increased the 5-HT concentration in all three brain regions, and increased the DA concentration in the striatum. Probenecid increased all three acid metabolite concentrations in the hypothalamus and median eminence, while only the HVA and 5-HIAA concentrations were increased in the striatum. The DA and 5-HT concentrations were unaltered. The LCEC methods described in this paper should be useful in elucidating the mechanisms and roles of 5-HT and DA neurons in experimental paradigms of biological interest.  相似文献   

11.
A reversed-phase chromatographic method with electrochemical detection was developed for the simultaneous determination of 2,3- and 2,5-dihydroxybenzoates, indicators of in vivo hydroxyl free radical formation, monoamines (NE, DA, 5-HT) and their metabolites (MHPG, DOPAC, HVA, 3MT, 5-HIAA). Linearity was observed from 10 pg to 10 ng injected. Reproducibility is correct (C.V. about 9%) except for 3MT and 5-HT. The limit of detection for almost all products was about 20 pg injected on the column. An application of this method in the study of the neurotoxicity of high pressure oxygen in rat is described. The limit of quantification for all compounds was 5 ng/ml except for HVA (10 ng/ml). Some basal levels DA, 5-HT, 5-HIAA, HVA, DOPAC, 3MT, 2,5-DHBA and 2,3-DHBA in microdialysates coming from striatum of normoxic restrained rats are given.  相似文献   

12.
Comparatively little is known about the pathways of proximate causation that link divergent genotypes, via neurophysiological differences, to distinct, species-specific social behaviors and systems. One approach to the problem compares gross activity levels of monoamine neurotransmitters (norepinephrine, dopamine, and serotonin), evidenced by their metabolites —3-methoxy-4-hydroxyphenylglycol (MHPG), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), respectively— in cerebrospinal fluid (CSF). We have applied this method to Papio hamadryas and P. anubis, closely related baboon species with divergent social behavior, living in the Awash National Park (ANP), Ethiopia. We had previously shown that adult males of the two species differ in the ratio of HVA to 5-HIAA, and in concentrations of MHPG and HVA, but not 5-HIAA. Here, we compare monoamine metabolite levels of the parental species with those of 49 members of a naturally formed, multigenerational hamadryas × anubis hybrid group. We cage-trapped the baboons in July 1998, sampled their CSF by cisternal puncture, and assayed monoamine metabolites by high-performance liquid chromatography. Previous findings suggested, anomalously, that hybrid males showed the high 5-HIAA levels predicted by the low-serotonin–early-dispersal hypothesis (originally based on observation of rhesus macaques, Macaca mulatta), while hamadryas did not. The present study failed to find higher 5-HIAA levels in hybrids, resolving the anomaly, but leaving the previous result unexplained. Among adult females (underrepresented in our sample) and juveniles, metabolite levels of the hybrids did not differ significantly from either parental species. Overall, adult male hybrids resembled anubis in HVA and HVA/5-HIAA ratio, but did not show the low MHPG levels characteristic of that species. Consistent with a significant genetic influence on species differences in these metabolites, the adult hybrids showed intermediate means and greater intra-population diversity than the parental species for most variables, but showed no indication of hybrid dysgenesis in the form of low intermetabolite correlation. To the contrary, an enhanced HVA–MHPG correlation in the hybrids suggested a species-associated factor (not necessarily genetic) influencing both of these monoamine neurotransmitter systems.  相似文献   

13.
Guinea-pigs were treated with chlorpromazine or 0.9% NaCl and exposed to +4 degrees C or +23 degrees C for 2 h. Hypothalamic noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5-HT), 3-methoxy-4-hydroxyphenylethylene-glycol (MHPG), homovanillinic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were determined by high-performance liquid chromatography. Serum and urinary catecholamines, muscle and liver glycogen and blood glucose were also measured. Chlorpromazine caused deep hypothermia at this moderately cold temperature and slight hypothermia at room temperature. Cold increased the activity of noradrenergic and serotonergic neurons, as indicated by the increase in hypothalamic MHPG and 5-HIAA and also the MHPG:NA and 5-HIAA:5-HT ratios. A tendency towards drug-induced inhibition of hypothalamic serotonergic neurons was seen, although this was not significant. A drug-induced inhibition of noradrenergic neurons could not be ruled out. Increased drug-induced turnover of DA was observed in the cold, and a tendency in the same direction was seen at room temperature. Excretion of DA into the urine was induced by chlorpromazine. The hypothermic guinea-pigs had low serum catecholamines, indicating diminished sympathetic activity, but high urinary catechols, a sign of cold stress.  相似文献   

14.
The three-spined stickleback Gasterosteus aculeatus is an intermediate host of the tapeworm Schistocephalus solidus. Changes in predator avoidance, foraging and shoaling behaviour have been reported in sticklebacks infested with S. solidus, but the mechanisms underlying parasite-induced behavioural changes are not understood. Monoamine neurotransmitters are involved in the control of behaviour and central monoaminergic systems are sensitive to various stressors. Thus, the behavioural effects of S. solidus infestation might be a reflection of changes in brain monoaminergic activity in the stickleback host. The concentrations of 5-hydroxytryptamine (5-HT), dopamine (DA), norepinephrine (NE) and their metabolites 5-hydroxy-indoleacetic acid (5-HIAA), homovanilic acid (HVA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) were measured in the telencephalons, hypothalami and brainstems of parasitized and non-parasitized female sticklebacks held in the laboratory. The ratios of 5-HIAA:5-HT were significantly elevated in both the hypothalami and brainstems of infected sticklebacks. The concentrations of 5-HT and NE were significantly reduced in the telencephalons of infected fish as compared with controls, but there was no elevation of metabolite concentrations. The results are consistent with chronic stress in infected fish, but may also reflect other alterations of neuroendocrine status resulting from parasite infection.  相似文献   

15.
Alterations in the metabolism of monoamine neurotransmitters have been proposed to be involved in the development of the hepatic encephalopathy (HE) associated with experimental and human liver failure. In order to evaluate this hypothesis, the monoamines and some of their metabolites were measured in homogenates of caudate nucleus (CAU), prefrontal (PFCo) and frontal cortex (FCo) dissected from brains obtained at autopsy from nine cirrhotic patients who had died in hepatic coma and an equal number of control subjects, free from neurological, psychiatric and hepatic disorders, matched for age and time interval from death to freezing of autopsied brain samples. Monoamine measurements were performed by high-performance liquid chromatography with ion-pairing and electrochemical detection after a simple extraction procedure. In all three regions investigated, concentrations of dopamine (DA) were unchanged in cirrhotic patients vs controls while its metabolites, 3-methoxytyramine (3-MT) and homovanillic acid (HVA) were selectively affected i.e.3-MT was found to be increased in CAU, while HVA levels were increased in FCo and CAU. DOPAC was also found to be unchanged in CAU. Noradrenaline (NA) levels were greatly increased in PFCo and FCo of cirrhotic patients but remained unchanged in CAU. No significant differences in the concentrations of either serotonin (5-HT) or of its precursor 5-hydroxytryptophan (5-HTP) were found in any of the three regions studied. However, 5-hydroxyindoleacetic acid (5-HIAA), the major metabolite of 5-HT, was increased in PFCo and CAU of cirrhotic patients. These findings show that selective alterations of catecholamine and 5-HT systems are involved in human HE and therefore, they may play an important role in the pathogenesis of certain neurological symptoms associated with this encephalopathy.  相似文献   

16.
Rat brain monoamine and serotonin S2 receptor changes during pregnancy   总被引:1,自引:0,他引:1  
The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.  相似文献   

17.
A novel and highly sensitive method has been developed for the determination of catecholamines [noradrenaline (NA), dopamine (DA), serotonin (5-HT) and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA)] in brain tissue. The method uses isocratic reversed-phase HPLC with amperometric end-point detection. The calibration curve was linear over the range 10–150 pg on-column. The assay limits of detection for NA, DA, 5-HT, 5-HIAA and HVA were 3.8, 3.8, 6.8, 5 and 7.5 pg on-column, respectively. The mean inter- and intra-assay relative standard deviations (RSDs) over the range of the standard curve were less than 5%. The absolute recoveries averaged 99.1%, 99.5%, 97.7%, 99.5% and 98.8% for NA, DA, 5-HT, 5-HIAA and HVA, respectively.  相似文献   

18.
L A Phebus  J A Clemens 《Life sciences》1989,44(19):1335-1342
Rat striatal extracellular fluid levels of dopamine, serotonin, 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were measured before, during and after transient, global cerebral ischemia in awake rats using in vivo brain microdialysis. Before ischemia, extracellular levels of dopamine, DOPAC, HVA and 5-HIAA were detectable and consistent from sample to sample. During cerebral ischemia, there was a large increase in extracellular dopamine levels and a decrease in the extracellular levels of DOPAC, HVA, and 5-HIAA. During reperfusion, dopamine levels returned to normal as did those of DOPAC, HVA and 5-HIAA. Dialysate serotonin and 3-methoxytyramine concentrations were below detection limits except for samples collected during ischemia and early reperfusion.  相似文献   

19.
The efflux of endogenous 3,4-dihydroxyphenylethylamine (DA) 5-hydroxytryptamine (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the nucleus accumbens of the anesthetized rat was studied using a push-pull cannula. Local perfusion for 10 minutes with 35 mM K+ significantly (P<0.01) increased the release of DA and 5-HT, but not their metabolites, from their respective control levels of 0.95 and 0.04 pmol/15 min to 2.5 and 0.23 pmol/15 min. Exposure to 35 mM K+ a second and third time resulted in a decrement in the amount of stimulated release for both DA and 5-HT. This decrease was prevented by local perfusion for 10 minutes with 50 uM L-tyrosine and -tryptophan starting 30 minutes before each episode of depolarization. The baseline amounts of DOPAC, HVA and 5-HIAA observed in the perfusates were several fold higher than the basal levels found for 5-HT and Da. In the absence of precursors, the efflux of DOPAC, HVA and 5-HIAA decreased approximately 60, 40 and 25%, respectively, from the first to the last baseline fraction collected. Addition of precursors prevented the decrease for DOPAC and 5-HIAA but not for HVA. The data indicated that (a) the release of DA and 5-HT, along with their metabolites, could be simultaneously measured with the present procedure, and (b) when using the push-pull cannula, local perfusion with precursors may be necessary following periods of sustained and/or repeated stimulation in order to replenish the monoamine transmitter pools.  相似文献   

20.
Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) in the CSF of patients with Huntington's disease (HD) were measured by HPLC. CSF DA, DOPAC, and MHPG levels were found to be increased in HD patients. Levels of HVA, 5-HIAA, and NA in the CSF of HD patients did not differ from those of controls. Changes in CSF DA and DOPAC levels were consistent with previous findings of increased DA tissue content in some brain areas of patients with HD. These results suggest that CSF DOPAC levels could be a more reliable index of overactive dopaminergic brain systems in HD than CSF HVA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号