首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Azoreductase plays a key role in bioremediation and biotransformation of azo dyes. It initializes the reduction of azo bond in azo dye metabolism under aerobic or anaerobic conditions. In the present study, we isolated an alkaliphilic red-colored Aquiflexum sp. DL6 bacterial strain and identified by 16S rRNA method. We report nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-dependent azoreductase purified from Aquiflexum sp. DL6 by a combination of ammonium sulfate precipitation and chromatography methods. The azoreductase was purified up to 30-fold with 37 % recovery. The molecular weight was found to be 80 kDa. The optimum activity was observed at pH 7.4 and temperature 60 °C with amaranth azo dye as a substrate. The thermal stability of azoreductase was up to 80 °C. The azoreductase has shown a wide range of substrate specificity, including azo dyes and nitro aromatic compounds. Metal ions have no significant inhibitory action on azoreductase activity. The apparent K m and V max values for amaranth azo dye were 1.11 mM and 30.77 U/mg protein respectively. This NAD (P) H azoreductase represents the first azoreductase to be characterized from alkaliphilic bacteria.  相似文献   

2.
A white-rot basidiomycete, isolated from decayed acacia wood (from Northwest of Tunisia) and identified as Trametes sp, was selected in a broad plate screening because of its ability to decolorize and dephenolize olive oil mill wastewater (OMW) efficiently. The major laccase was purified and characterized as a monomeric protein with apparent molecular mass of 61 kDa (SDS-PAGE). It exhibits high enzyme activity over broad pH and temperature ranges with optimum activity at pH 4.0 and a temperature of 60 °C. The purified laccase is stable at alkaline pH values. The enzyme retained 50 % of its activity after 90 min of incubation at 55 °C. Using ABTS, this laccase presented K m and V max values of 0.05 mM and 212.73 μmoL min?1 mg?1, respectively. It has shown a degrading activity towards a variety of phenolic compounds. The purified laccase was partially inhibited by Fe2+, Zn2+, Cd2+ and Mn2+, while Cu2+ acted as inducer. EDTA (10 mM) and NaN3 (10 mM) were found to completely inhibit its activity. 73 % OMW was dephenolized after 315 min incubation at 30 °C with 2 U mL?1 of laccase and 2 mM HBT.  相似文献   

3.
Laccase-producing fungi were isolated from air, using selective media with a chromogenic substrate to indicate enzyme activity. The best laccase producer strain proved to be a Leptosphaerulina chartarum isolate. Laccase production was investigated in the presence of various inducers in different cultivation conditions. The extracellular laccase was purified for further investigations. SDS-PAGE showed that this laccase is a monomeric protein of 38 kDa molecular weight. The enzyme is active in the pH-range of 3.5–6, with an optimum at pH 3.8. It is active in the 10–60 °C temperature range, with an optimum at 40 °C. After 20 min incubation at temperatures above 70 °C the enzyme lost its activity. Degradation of seven aniline and phenol compounds (2,4-dichlorophenol; 2-methyl-4-chlorophenol; 3-chloroaniline; 4-chloroaniline; 2,6-dimethylaniline; 3,4-dichloroaniline and 3-chloro-4-methylaniline) was investigated, with or without guaiacol (2-methoxyphenol) as mediator molecule. Addition of a mediator to the system significantly increased the degradation levels. These results confirmed that the isolated laccase is able to convert these harmful xenobiotics at in vitro conditions.  相似文献   

4.
??-Glutamyl transpeptidase of a thermo-acidophilic archaeon Picrophilus torridus was cloned and expressed using E. coli Rosetta-pET 51b(+) expression system. The enzyme was expressed at 37 °C/200 rpm with ??-GT production of 1.99 U/mg protein after 3 h of IPTG induction. It was improved nearby 10-fold corresponding to 18.92 U/mg protein in the presence of 2 % hexadecane. The enzyme was purified by Ni2+-NTA with a purification fold of 3.6 and recovery of 61 %. It was synthesized as a precursor heterodimeric protein of 47 kDa with two subunits of 30 kDa and 17 kDa, respectively, as revealed by SDS-PAGE and western blot. The enzyme possesses hydrolase activity with optima at pH 7.0 and 55 °C. It was thermostable with a t 1/2 of 1 h at 50 °C and 30 min at 60 °C, and retained 100 % activity at 45 °C even after 24 h. It was inhibited by azaserine and DON and PMSF. Pt??-GT shared 37 % sequence identity and 53 % homology with an extremophile ??-GT from Thermoplasma acidophilum. Functional residues identified by in silico approaches were further validated by site-directed mutagenesis where Tyr327 mutated by Asn327 introduced significant transpeptidase activity.  相似文献   

5.
Extracellular lipase from Bacillus coagulans BTS-3 was immobilized on (3 Å × 1.5 mm) molecular sieve. The molecular sieve showed approximately 68.48% binding efficiency for lipase (specific activity 55 IU mg?1). The immobilized enzyme achieved approx 90% conversion of acetic acid and 4-nitrophenol (100 mM each) into 4-nitrophenyl acetate in n-heptane at 65°C in 3 h. When alkane of C-chain length other than n-heptane was used as the organic solvent, the conversion of 4-nitrophenol and acetic acid was found to decrease. About 88.6% conversion of the reactants into ester was achieved when reactants were used at molar ratio of 1:1. The immobilized lipase brought about conversion of approximately 58% for esterification of 4-nitrophenol and acetic acid into 4-nitrophenyl acetate at a temperature of 65°C after reuse for 5 cycles.  相似文献   

6.
Alkaline protease from Oerskovia xanthineolytica TK-1 was purified to an electrophoretically homogeneous state by phenyl-Sepharose CL-4B and DEAE-Sephacel. The molecular mass of the enzyme was 20,000 Da by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 9.5–11.0 and 50°C. It was inhibited by inhibitors of serine protease. The enzyme preferentially hydrolyzed the ester of phenylalanine among N-CBZ amino acid p-nitrophenol esters. These results indicate that the protease can be classified as an alkaline serine protease.  相似文献   

7.
A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52 % amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5 °C and pH 6.5 and retained more than 55 % of the maximum activity when assayed at 40–75 °C, 23 % at 20 °C, 16 % at 85 °C, and even 8 % at 0 °C. Half-lives of the enzyme were more than 60 min, approximately 25 and 4 min at 70, 75, and 80 °C, respectively. The enzyme exhibited more than 62 % xylanase activity and stability at the concentration of 3–30 % (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37 °C for 60 min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5–19.0, 15.3–19.0, 21.9–27.7, and 28.2–31.2 μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive.  相似文献   

8.
An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60–65°C. The apparent K m with citrus pectin was 1.46 mg/ml and the V max was 2433.3 μmol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50°C for 1 h and showed a half-life of 10 min at 60°C. Polygalacturonase was stable at pH 5.0–5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn+2, Mn+2, and Hg+2, inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.  相似文献   

9.
A serine alkaline protease (EC.3.4.21) was isolated, purified and characterized from culture filtrate of the thermophilic fungus Thermomyces lanuginosus Tsiklinsky. Fructose (1.5 %) and gelatin (0.5 %) proved to be the best carbon and nitrogen sources, giving a maximum enzyme yield of 9.2 U/mL. Dates waste was utilized as a sole organic source to improve enzyme productivity, and the yield was calculated to be 11.56 U/mL. This yield was expressed also as 231.2 U/g of assimilated waste. The alkaline protease produced was precipitated by iso-propanol and further purified by gel filtration through Sephadex G-100 and ion exchange column chromatography on diethyl amino ethyl (DEAE)-cellulose with a yield of 30.12 % and 13.87-fold purification. The enzyme acted optimally at pH 9 and 60 °C and had good stability at alkaline pH and high temperatures. The enzyme possessed a high degree of thermostability and retained full activity even at the end of 1 h of incubation at 60 °C. Michaelis–Menten constant (K m), maximal reaction velocity (V max) and turnover number (K cat) of the purified enzyme on gelatin as a substrate were calculated to be 4.0 mg/mL, 18.5 U/mL and 1.8 s?1, respectively. The best enzyme activators were K+, Ca2+ and Mn2, respectively, while phenylmethylsulfonyl fluoride (PMSF) was the strongest inhibitory agent, thus suggesting that the enzyme is a serine type protease. The enzyme is a glycoprotein with molecular mass of 33 kDa as determined by SDS-PAGE. It retained full activity after 15 min incubation at 60 °C in the presence of the detergent Ariel, thus indicating its suitability for application in the detergent industry.  相似文献   

10.
Many types of superoxide dismutases have been purified and characterized from various bacteria, however, a psychrophilic Mn-superoxide dismutase (MnSOD) has not yet been reported. Here, we describe the purification and the biochemical characterization of the psychrophilic MnSOD from Exiguobacterium sp. strain OS-77 (EgMnSOD). According to 16S rRNA sequence analysis, a newly isolated bacterium strain OS-77 belongs to the genus Exiguobacterium. The optimum growth temperature of the strain OS-77 is 20 °C. The EgMnSOD is a homodimer of 23.5 kDa polypeptides determined by SDS-PAGE and gel filtration analysis. UV-Vis spectrum and ICP-MS analysis clearly indicated that the homogeneously purified enzyme contains only a Mn ion as a metal cofactor. The optimal reaction pH and temperature of the enzyme were pH 9.0 and 5 °C, respectively. Notably, the purified EgMnSOD was thermostable up to 45 °C and retained 50 % activity after 21.2 min at 60 °C. The differential scanning calorimetry also indicated that the EgMnSOD is thermostable, exhibiting two protein denaturation peaks at 65 and 84 °C. The statistical analysis of amino acid sequence and composition of the EgMnSOD suggests that the enzyme retains psychrophilic characteristics.  相似文献   

11.
A new fungal strain that was isolated from our library was identified as an Aspergillus oryzae and noted to produce a novel proly endopeptidase. The enzyme was isolated, purified, and characterized. The molecular mass of the prolyl endopeptidase was estimated to be 60 kDa by using SDS-PAGE. Further biochemical characterization assays revealed that the enzyme attained optimal activity at pH 4.0 with acid pH stability from 3.0 to 5.0. Its optimum temperature was 30 °C and residual activity after 30 min incubation at 55 °C was higher than 80 %. The enzyme was activated and stabilized by Ca2+ but inhibited by EDTA (10 mM) and Cu2+. The K m and k cat values of the purified enzyme for different length substrates were also evaluated, and the results imply that the enzyme from A. oryzae possesses higher affinity for the larger substrates. Furthermore, this paper demonstrates for the first time that a prolyl endopeptidase purified from A. oryzae is able to hydrolyze intact casein.  相似文献   

12.
The fungus Sclerotinia sclerotiorum produces invertase activity during cultivation on many agroindustrial residues. The molasses induced invertase was purified by DEAE-cellulose chromatography. The molecular mass of the purified enzyme was estimated at 48 kDa. Optimal temperature was determined at 60 °C and thermal stability up to 65 °C. The enzyme was stable between pH 2.0 and 8.0; optimum pH was about 5.5. Apparent Km and Vmax for sucrose were estimated to be respectively 5.8 mM and 0.11 μmol/min. The invertase was activated by β-mercaptoethanol. Free enzyme exhibited 80 % of its original activity after two month’s storage at 4 °C and 50 % after 1 week at 25 °C. In order to investigate an industrial application, the enzyme was immobilized on alginate and examined for invert sugar production by molasses hydrolysis in a continuous bioreactor. The yield of immobilized invertase was about 78 % and the activity yield was 59 %. Interestingly the immobilized enzyme hydrolyzed beet molasses consuming nearly all sucrose. It retained all of its initial activity after being used for 4 cycles and about 65 % at the sixth cycle. Regarding productivity; 20 g/l of molasses by-product gave the best invert sugar production 46.21 g/day/100 g substrate related to optimal sucrose conversion of 41.6 %.  相似文献   

13.
An extracellular haloalkaliphilic thermostable α-amylase producing archaeon was isolated from the saltwater Lake Urmia and identified as Halorubrum xinjiangense on the basis of morphological, biochemical, and molecular properties. The enzyme was purified to an electrophoretically homogenous state by 80 % cold ethanol precipitation, followed by affinity chromatography. The concentrated pure amylase was eluted as a single peak on fast protein liquid chromatography. The molecular mass of the purified enzyme was about 60 kDa, with a pI value of 4.5. Maximum amylase activity was at 4 M NaCl or 4.5 M KCl, 70 °C, and pH 8.5. The K m and V max of the enzyme were determined as 3.8 mg ml?1 and 12.4 U mg?1, respectively. The pure amylase was stable in the presence of SDS, detergents, and organic solvents. In addition, the enzyme (20 U) hydrolyzed 69 % of the wheat starch after a 2-h incubation at 70 °C in an aqueous/hexadecane two-phase system.  相似文献   

14.
An extracellular low temperature-active alkaline stable peptidase from Acinetobacter sp. MN 12 was purified to homogeneity with a purification fold of 9.8. The enzyme exhibited specific activity of 6,540 U/mg protein, with an apparent molecular weight of 35 kDa. The purified enzyme was active over broad range of temperature from 4 to 60 °C with optimum activity at 40 °C. The enzyme retained more than 75 % of activity over a broad range of pH (7.0–11.0) with optimum activity at pH 9.0. The purified peptidase was strongly inhibited by phenylmethylsulfonyl fluoride, giving an indication of serine type. The K m and V max for casein and gelatin were 0.3529, 2.03 mg/ml and 294.11, 384.61 μg/ml/min respectively. The peptidase was compatible with surfactants, oxidizing agents and commercial detergents, and effectively removed dried blood stains on cotton fabrics at low temperature ranging from 15 to 35 °C.  相似文献   

15.
A carbonyl reductase (SCR2) gene was synthesized and expressed in Escherichia coli after codon optimization to investigate its biochemical properties and application in biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE), which is an important chiral synthon for the side chain of cholesterol-lowering drug. The recombinant SCR2 was purified and characterized using ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. The specific activity of purified enzyme was 11.9 U mg?1. The optimum temperature and pH for enzyme activity were 45 °C and pH 6.0, respectively. The half-lives of recombinant SCR2 were 16.5, 7.7, 2.2, 0.41, and 0.05 h at 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C, respectively, and it was highly stable in acidic environment. This SCR2 displayed a relatively narrow substrate specificity. The apparent K m and V max values of purified enzyme for COBE are 6.4 mM and 63.3 μmol min?1 mg?1, respectively. The biocatalytic process for the synthesis of (S)-CHBE was constructed by this SCR2 in an aqueous–organic solvent system with a substrate fed-batch strategy. At the final COBE concentration of 1 M, (S)-CHBE with yield of 95.3 % and e.e. of 99 % was obtained after 6-h reaction. In this process, the space-time yield per gram of biomass (dry cell weight, DCW) and turnover number of NADP+ to (S)-CHBE were 26.5 mmol L?1 h?1 g?1 DCW and 40,000 mol/mol, respectively, which were the highest values as compared with other works.  相似文献   

16.
This work provides spectroscopic, catalytic, and stability fingerprints of two new bacterial dye-decolorizing peroxidases (DyPs) from Bacillus subtilis (BsDyP) and Pseudomonas putida MET94 (PpDyP). DyPs are a family of microbial heme-containing peroxidases with wide substrate specificity, including high redox potential aromatic compounds such as synthetic dyes or phenolic and nonphenolic lignin units. The genes encoding BsDyP and PpDyP, belonging to subfamilies A and B, respectively, were cloned and heterologously expressed in Escherichia coli. The recombinant PpDyP is a 120-kDa homotetramer while BsDyP enzyme consists of a single 48-kDa monomer. The optimal pH of both enzymes is in the acidic range (pH 4–5). BsDyP has a bell-shape profile with optimum between 20 and 30 °C whereas PpDyP shows a peculiar flat and broad (10–30 °C) temperature profile. Anthraquinonic or azo dyes, phenolics, methoxylated aromatics, and also manganese and ferrous ions are substrates used by the enzymes. In general, PpDyP exhibits higher activities and accepts a wider scope of substrates than BsDyP; the spectroscopic data suggest distinct heme microenvironments in the two enzymes that might account for the distinctive catalytic behavior. However, the Bs enzyme with activity lasting for up to 53 h at 40 °C is more stable towards temperature or chemical denaturation than the PpDyP. The results of this work will guide future optimization of the biocatalytis towards their utilization in the fields of environmental or industrial biotechnology.  相似文献   

17.
Aspergillus oryzae aminohydrolase free acid phosphodiesterase catalyzes nicotinamide adenine dinucleotide to deamino-NAD and ammonia. The enzyme was purified to homogeneity by a combination of acetone precipitation, anion exchange chromatography and gel filtration chromatography. The enzyme was purified 230.5 fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band of MW 94 kDa. The enzyme displayed maximum activity at pH 5 and 40 °C with NAD as substrate. The enzyme activity appeared to be stable up to 40 °C. The enzyme activity was enhanced slightly by addition of Na+ and K+, whereas inhibited strongly by addition of Ag+, Mn2+, Hg2+ and Cu2+ to the reaction mixtures. The enzyme hydrolyzes several substrates, suggesting a probable non-specific nature. The enzyme catalyzes the hydrolytic cleavage of amino group of NAD, adenosine, AMP, CMP, GMP, adenosine, cytidine and cytosine to the corresponding nucleotides, nucleosides or bases and ammonia. The substrate concentration–activity relationship is the hyperbolic type and the apparent Km and Kcat for the tested substrates were calculated.  相似文献   

18.
Glucose isomerase (GIase) catalyzes the isomerization of d-glucose to d-fructose. The GIase from Thermobifida fusca WSH03-11 was expressed in Escherichia coli BL21(DE3), and the purified enzyme took the form of a tetramer in solution and displayed a pI value of 5.05. The temperature optimum of GIase was 80 °C and its half life was about 2 h at 80 °C or 15 h at 70 °C. The pH optimum of GIase was 10 and the enzyme retained 95 % activity over the pH range of 5–10 after incubating at 4 °C for 24 h. Kinetic studies showed that the K m and K cat values of the enzyme are 197 mM and 1,688 min?1, respectively. The maximum conversion yield of glucose (45 %, w/v) to fructose of the enzyme was 53 % at pH 7.5 and 70 °C. The present study provides the basis for the industrial application of recombinant T. fusca GIase in the production of high fructose syrup.  相似文献   

19.
A cutinase gene (ScCut1) was amplified by PCR from the genomic DNA of the ascomycetous plant pathogen Sirococcous conigenus VTT D-04989 using degenerate primers designed on the basis of conserved segments of known cutinases and cutinase-like enzymes. No introns or N- or O-glycosylation sites could be detected by analysis of the ScCut1 gene sequence. The alignment of ScCut1 with other fungal cutinases indicated that ScCut1 contained the conserved motif G-Y-S-Q-G surrounding the active site serine as well as the aspartic acid and histidine residues of the cutinase active site. The gene was expressed in Pichia pastoris, and the recombinantly produced ScCut1 enzyme was purified to homogeneity by immobilized metal affinity chromatography exploiting a C-terminal His-tag translationally fused to the protein. The purified ScCut1 exhibited activity at acidic pH. The K m and V max values determined for pNP-butyrate esterase activity at pH 4.5 were 1.7 mM and 740 nkat mg?1, respectively. Maximal activities were determined at between pH 4.7 and 5.2 and at between pH 4.1 and 4.6 with pNP-butyrate and tritiated cutin as the substrates, respectively. With both substrates, the enzyme was active over a broad pH range (between pH 3.0 and 7.5). Activity could still be detected at pH 3.0 both with tritiated cutin and with p-nitrophenyl butyrate (relative activity of 25 %) as the substrates. ScCut1 showed activity towards shorter (C2 to C3) fatty acid esters of p-nitrophenol than towards longer ones. Circular dichroism analysis suggested that the denaturation of ScCut1 by heating the protein sample to 80 °C was to a great extent reversible.  相似文献   

20.
An acid-tolerant α-galactosidase (CVGI) was isolated from the fruiting bodies of Coriolus versicolor with a 229-fold of purification and a specific activity of 398.6 units mg?1. It was purified to electrophoretic homogeneity by ion exchange chromatography and gel filtration chromatography. The purified enzyme gave a single band corresponding to a molecular mass of 40 kDa in SDS-PAGE and gel filtration. The α-galactosidase was identified by MALDI-TOF-MS and its inner peptides were sequenced by ESI-MS/MS. The optimum temperature and pH of the enzyme were determined as 60 °C and 3.0, respectively. The enzyme was very stable at a temperature range of 4–50 °C and at a pH range of 2–5. Among the metal ions tested, Cu2+, Cd2+ and Hg2+ ions have been shown to partially inhibit the activity of α-galactosidase, while the activity of CVGI was completely inactivated by Ag+ ions. N-bromosuccinamide inhibited enzyme activity by 100 %, indicating the importance of tryptophan residue(s) at or near the active site. CVGI had wide substrate specificity (p-nitrophenyl galactoside, melidiose, raffinose and stachyose). After treatment with CVGI, raffinose family oligosaccharide was hydrolyzed effectively to yield galactose and sucrose. The results showed that the general properties of the enzyme offer potential for use of this α-galactosidase in several production processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号