首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Recent studies on the metabolic activities of genus Rhodococcus have shown rhodococci to be of important use in industrial, pharmaceutical and environmental biotechnology. The increasing economic significance of Rhodococcus encourages renewed efforts to characterize their genetic systems, as Rhodococcus genetics are still poorly understood. The goal of this study is to adapt a transposon system for use in creating random mutagenesis in Rhodococcus erythropolis. A plasmid carrying IS1415, a member of IS21 family identified from Rerythropolis, has been constructed and designated as pTNR. pTNR is a non-replicating transposon tool introduced into target cells by electroporation. During its transposition, the transposable-marker gene is separated from the open reading frames (istAB) of IS1415, which should avoid secondary transposition. Transposition of pTNR into wild-type R. erythropolis created mutagenesis with a high efficiency of 1.23x10(6)mutants per microgram plasmid DNA. However, it could also be transposed into other Rhodococcus spp. at lower frequencies in comparison with that of R. erythropolis. It has been indicated by Southern hybridization that the generated kanamycin-resistant mutants were resulted from single transposition event of pTNR. The results also revealed that the transposable-marker gene of pTNR was randomly inserted into the chromosomal DNA of R. erythropolis. The affected DNA regions carrying the transposed DNA element could be conveniently recovered for further characterization using a plasmid rescue procedure. Sequence data of the insertion sites of 40 random mutants analyzed indicated that transposition of pTNR generated 6-bp direct target duplications in 36 cases, while in the remaining four mutants; it generated 5- or 7-bp target duplications (two cases each). This study concluded that pTNR could be served as an efficient genetic tool for construction of random mutagenesis system in Rhodococcus species.  相似文献   

2.
StreptomycesPhiC31-based site-specific integration was used to transform the facultative intracellular pathogen Rhodococcus equi. The transformation efficiency of vectors incorporating the PhiC31 integrase and attP sites was comparable to that of replication plasmids using the same electroporation procedure. A single attB integration site was identified within an ORF encoding a pirin-like protein, which deviates slightly from the consensus sequence of Streptomyces attB sites. Vector integration was stably maintained in the R. equi chromosome for as many as 100 generations during unselected passage in vitro. In addition, integration does not appear to affect the replication of bacteria inside macrophages. Finally, this integration system was also used to successfully complement an R. equi mutant.  相似文献   

3.
4.
RNA interference (RNAi) is a powerful tool for functional gene analysis, which has been successfully used to down-regulate the levels of specific target genes, enabling loss-of-function studies in living cells. Hairpin (hp) RNA expression cassettes are typically constructed on binary plasmids and delivered into plant cells by Agrobacterium-mediated genetic transformation. Realizing the importance of RNAi for basic plant research, various vectors have been developed for RNAi-mediated gene silencing, allowing the silencing of single target genes in plant cells. To further expand the collection of available tools for functional genomics in plant species, we constructed a set of modular vectors suitable for hpRNA expression under various constitutive promoters. Our system allows simple cloning of the target gene sequences into two distinct multicloning sites and its modular design provides a straightforward route for replacement of the expression cassette's regulatory elements. More importantly, our system was designed to facilitate the assembly of several hpRNA expression cassettes on a single plasmid, thereby enabling the simultaneous suppression of several target genes from a single vector. We tested the functionality of our new vector system by silencing overexpressed marker genes (green fluorescent protein, DsRed2, and nptII) in transgenic plants. Various combinations of hpRNA expression cassettes were assembled in binary plasmids; all showed strong down-regulation of the reporter genes in transgenic plants. Furthermore, assembly of all three hpRNA expression cassettes, combined with a fourth cassette for the expression of a selectable marker, resulted in down-regulation of all three different marker genes in transgenic plants. This vector system provides an important addition to the plant molecular biologist's toolbox, which will significantly facilitate the use of RNAi technology for analyses of multiple gene function in plant cells.  相似文献   

5.
Ectopic expression of genes from recombinant plasmids is commonly used to study gene function. In Dictyostelium, three drug resistance cassettes are commonly used as selectable markers in vectors. We report here a comparative study of the expression of green fluorescent protein (GFP) gene from vectors containing each of the drug-resistant cassettes. The expression was highest in cells transformed with the vectors containing the neomycin-resistant cassette (pDNeoGFP), followed by the hygromycin-resistant cassette (pDHygGFP) and the blasticidin-resistant cassette (pDBsrGFP). The level of GFP expression was directly related to the copy number of the vector in transformants. In turn, the copy number of the vector depended on the drug resistance cassette as well as the concentration of the drug used in selection. In general, cells with higher copy numbers could be selected by a higher drug concentration. The expression of GFP was also affected by the method of transformation. For pDHygGFP, expression of GFP was much higher in cells transformed by electroporation than those transformed by calcium phosphate coprecipitation. However, only a slight difference was observed for pDNeoGFP or pDBsrGFP.  相似文献   

6.
K M Pang  M A Lynes  D A Knecht 《Plasmid》1999,41(3):187-197
Ectopic expression of genes from recombinant plasmids is commonly used to study gene function. In Dictyostelium, three drug resistance cassettes are commonly used as selectable markers in vectors. We report here a comparative study of the expression of green fluorescent protein (GFP) gene from vectors containing each of the drug-resistant cassettes. The expression was highest in cells transformed with the vectors containing the neomycin-resistant cassette (pDNeoGFP), followed by the hygromycin-resistant cassette (pDHygGFP) and the blasticidin-resistant cassette (pDBsrGFP). The level of GFP expression was directly related to the copy number of the vector in transformants. In turn, the copy number of the vector depended on the drug resistance cassette as well as the concentration of the drug used in selection. In general, cells with higher copy numbers could be selected by a higher drug concentration. The expression of GFP was also affected by the method of transformation. For pDHygGFP, expression of GFP was much higher in cells transformed by electroporation than those transformed by calcium phosphate coprecipitation. However, only a slight difference was observed for pDNeoGFP or pDBsrGFP.  相似文献   

7.
We designed a new vector system for creating a random mutant library with multiple integrations of DNA fragments into the Rhodococcus genome in a single step. For this, we cotransformed two vectors into Rhodococcus by electroporation: pTip-istAB-sacB regulates the expression of the transposase (IstA) and its helper protein (IstB) under the influence of a thiostrepton-inducible promoter, and pRTSK-sacB provides the transposable-marker DNA. Both are multicopy vectors that are stable in the host cells; transposition of the transposable-marker DNA occurs only after the induction of IstA/IstB expression. With the addition of thiostrepton, all cultured cells harboring the two vectors, irrespective of the volume, can be mutated by random insertion of the transposable-marker DNA into their genome. Among the generated mutants examined, 30% showed multiple (two to five) insertion copies. The multiple integrated DNA copies were stable in the genome for more than 80 generations of serial growth without the addition of any selective antibiotics. This system can also be used for integrating various copy numbers of stably maintained protein expression cassettes in the host cell genome to modulate the expression level of biologically active recombinant proteins. We successfully applied this system to integrate multiple copies of expression cassettes for proline iminopeptidase and vitamin D3 hydroxylase into the Rhodococcus genome and verified that the clones containing double or multiple copies of the integrated cassettes produced higher levels and showed higher enzymatic activities of the target protein than clones with only a single copy of integration.The actinobacteria or actinomycetes are a group of Gram-positive bacteria with a high G+C content. Many species of actinobacteria are well known as attractive hosts for the production of biologically active compounds since they can easily utilize cheap complex industrial media and possess excellent secretion capacities. This group includes several antibiotic producers (12, 15) and manufacturers of enzymes (5), amino acids (11), and heterologous proteins (3); hence, they are of high industrial, pharmacological, and commercial interest. Among the genera in this group are Corynebacterium, Mycobacterium, Streptomyces, Nocardia, and Rhodococcus.While a few Rhodococcus species are pathogenic, most are benign and have been found to thrive in a broad range of environments, including soil, water, and eukaryotic cells. Rhodococcus is an experimentally advantageous system due to its relatively fast growth rate and simple developmental cycle. Rhodococcus erythropolis can grow at temperatures ranging from 4 to 35°C (41), which enables the investigation of protein production over a wide range of temperatures (24). Strains of Rhodococcus have important applications due to their ability to bioconvert cheap starting material into more valuable compounds (23) and to metabolize harmful environmental pollutants such as toluene, naphthalene, herbicides, and polychlorinated biphenyls (PCBs) (6, 17). This genetic and catabolic diversity of Rhodococcus is the result of not only its large bacterial chromosome but also the presence of large linear plasmids (37). To date, 43 species of Rhodococcus (7; reference periodically updated at http://www.bacterio.net.) have been recognized (http://www.bacterio.cict.fr/qr/rhodococcus.html). However, Rhodococcus is not yet fully characterized.Various genetic tools have been established for the genetic manipulation of Rhodococcus. These include the development of efficient transformation techniques using electroporation (33); construction of expression vectors for protein production (24, 25); and development of shuttle vectors using cryptic, antibiotic-resistant, and temperature-sensitive plasmids (16, 18, 19, 22) derived from Rhodococcus strains as well as the generation of random mutagenesis using transposons.Several transposon mutagenesis systems have been reported for Rhodococcus species (1, 8, 20, 21). These systems can generate a single copy of insertion into the host cell genome. To date, no efficient tool is available for the creation of random multiple gene disruptions in a single step. Previous researches on the creation of multiple integrations in a genome have been based on site-directed mutagenesis or gene disruption in sequential steps, which requires different antibiotic markers for mutant selection (9, 28, 31, 36, 39, 40).We recently established the transposon-based vector system pTNR that can efficiently generate a random mutagenesis library by transposition in various Rhodococcus species (30). Inside the Rhodococcus cell, pTNR is unstable due to the lack of a replication origin for Rhodococcus. The expression of the transposase (IstA) and its helper protein (IstB) in pTNR is regulated under the influence of the constitutive promoter, Pnit (25). Once pTNR is electroporated into Rhodococcus cells, transposition occurs, whereby IstA and IstB are simultaneously expressed and initiate the integration of a single copy of the transposable-marker DNA into the host cell genome while the rest of the plasmid itself is lost. The transposable-marker DNA of pTNR locates between the two inverted repeats, IR1 and IR2, and encodes a replication origin for Escherichia coli and a kanamycin resistance gene, enabling easy identification of the insertion site via plasmid rescue from the genome (30).pTNR was further modified to be used for protein expression through insertion of the protein expression cassette into the host cell genome (29). Currently, four variants of pTNR vectors are available, each with a different antibiotic resistance marker gene. Two or more variants of pTNR can be used for creating double or multiple integrations in sequential steps or even in one step if the variants are cotransposed in combinations. Nonetheless, the incidence of achieving double or multiple integrations from the cotransposed pTNR variants is very low; hence, the statistical chance of inactivating multiple genes within a definite metabolic pathway or bioprocess by such a method is extremely low. To knock out these functionally related genes, an effective method to produce huge numbers of mutations with random insertions at multiple loci is required. To that end, the present study aimed to develop an efficient genome engineering system for random integration of multiple DNA copies into the Rhodococcus genome in a single step.  相似文献   

8.
9.
A set of vectors has been developed that simplify shuttling expression cassettes between small plasmids of high copy number ideal for experiments involving biolistic transient expression and a binary transformation plasmid. Three cassettes for the expression of a cloned coding sequence behind different promoters have been modified; combinations of these cassettes can be excised withNot I, and sequentially cloned into the transformation vector in a procedure that removes the first cloning site. The system is demonstrated by inducing anthocyanin synthesis with paired regulatory genes of maize biolistically delivered to a maize cell suspension, and then expressed in transformed tobacco.  相似文献   

10.
Abstract

A series of genes was generated from three interchangeable cassettes, each coding for a specific set of amino acids. The genes were inserted into two different fusion expression vectors and two direct expression vectors. The expression studies demonstrated that proteolytic stability of the proteins is affected by the N-terminal region of the protein.  相似文献   

11.
12.
13.
The limited packaging capacity of adeno-associated virus (AAV) precludes the design of vectors for the treatment of diseases associated with larger genes. Autonomous parvoviruses, such as minute virus of mice and B19, while identical in size (25 nm), are known to package larger genomes of 5.1 and 5.6 kb, respectively, compared to AAV genomes of 4.7 kb. One primary difference is the fact that wild-type (wt) AAV utilizes three capsid subunits instead of two to form the virion shell. In this study, we have characterized the packaging capacity of AAV serotypes 1 through 5 with and without the Vp2 subunit. Using reporter transgene cassettes that range in size from 4.4 to 6.0 kb, we determined that serotypes 1 through 5 with and without Vp2 could successfully package, replicate in, and transduce cells. Dot blot analysis established that packaging efficiency was similar for all vector cassettes and that the integrity of encapsidated genomes was intact regardless of size. Although physical characterization determined that virion structures were indistinguishable from wt, transduction experiments determined that all serotype vectors carrying larger genomes (5.3 kb and higher) transduced cells less efficiently (within a log) than AAV encapsidating wt size genomes. This result was not unique to reporter genes and was observed for CFTR vector cassettes ranging in size from 5.1 to 5.9 kb. No apparent advantage in packaging efficiency was observed when Vp2 was present or absent from the virion. Further analysis determined that a postentry step was responsible for the block in infection and specific treatment of cells upon infection with proteasome inhibitors increased transduction of AAV encapsidating larger DNA templates to wt levels, suggesting a preferential degradation of virions encapsidating larger-than-wt genomes. This study illustrates that AAV is capable of packaging and protecting recombinant genomes as large as 6.0 kb but the larger genome-containing virions are preferentially degraded by the proteasome and that this block can be overcome by the addition of proteasome inhibitors.  相似文献   

14.
Voeĭkova TA 《Genetika》1999,35(12):1626-1633
The conjugal transfer of autonomous and integrative plasmids from the donor strain Escherichia coli S17-1 to strains of genera Actinomadura, Arthrobacter, Kitasatoa, Micromonospora, Nocardia, Rhodococcus, Saccharopolyspora, and to 16 strains of the genus Streptomyces was demonstrated. The status of plasmids in recipient strains and the stability of their inheritance were analyzed. Plasmids constructed for strains of the genus Streptomyces were shown to function in a large number of strains belonging to the order Actinomycetales. The well-developed system of Streptomyces vector molecules and cloned genes of antibiotic biosynthesis allows their transfer to those microorganisms for which conventional techniques of plasmid transfer by regenerated protoplast transformation or electroporation have not been developed or are inefficient.  相似文献   

15.
We have constructed a binary vector for Agrobacterium-mediated plant transformation, which has a multiple cloning site consisting of 13 hexanucleotide restriction sites, 6 octanucleotide restriction sites and 5 homing endonuclease sites. The homing endonuclease sites have the advantages to be extremely rare in natural sequences and to allow unidirectional cloning. We have also constructed a set of auxiliary vectors allowing the assembly of expression cassettes flanked by homing endonuclease sites. The expression cassettes assembled in these auxiliary vectors can be transferred into the binary vector with virtually no risk of cutting the vector within previously introduced sequences. This vector set is ideally suited for the construction of plant transformation vectors containing multiple expression cassettes and/or other elements such as matrix attachment regions. With this modular vector system, six different expression units were constructed in as many auxiliary vectors and assembled together in one plant transformation vector. The transgenic nature of Arabidopsis thaliana plants, transformed with this plant transformation vector, was assessed and the expression of each of the six genes was demonstrated.  相似文献   

16.
17.
目的:研究质粒表达载体中2个表达单元间相互位置和转录方向关系对表达的影响,找出利于2个表达单元表达的优化的相互关系。方法:以全抗体为研究对象,构建了轻重链方向不同的2种相互关系的单质粒表达载体pIRESdhfrA和pIRESdhfrB,转染CHO-dhfr-细胞后,对瞬时表达水平进行了比较。以pIRESdhfrA和pIRESdhfrB为基础,构建了瞬时表达载体pIRESdhfrA-sv40ori和pIRESdhfrB-sv40ori,在COS-7细胞中进行了瞬时表达水平的比较。构建了基于CHO定点细胞系的稳定表达细胞株,对pIRESdhfrA和pIRESdhfrB进行稳定表达水平的比较。结果:在CHO-dhfr-的瞬时表达水平比较中,pIRESdhfrB转染的细胞表达水平是pIRESdhfrA转染细胞的2.18倍。与pIRESdhfrA-sv40ori在COS-7细胞的瞬时表达水平相比,pIRESdhfrB-sv40ori是其表达水平的2.3倍。pIRESdhfrB-FRT构建的CHO定点细胞平均表达水平是pIRESdhfrA-FRT构建的CHO定点细胞的11.6倍。结论:在构建的真核细胞质粒表达载体pIRESdhfr中,2个表达盒的启动子头-头转录方向关系比头-尾方向关系更利于重组蛋白的表达。  相似文献   

18.

Background

Multiple short hairpin RNA (shRNA) gene therapy strategies are currently being investigated for treating viral diseases such as HIV-1. It is important to use several different shRNAs to prevent the emergence of treatment-resistant strains. However, there is evidence that repeated expression cassettes delivered via lentiviral vectors may be subject to recombination-mediated repeat deletion of 1 or more cassettes.

Results

The aim of this study was to determine the frequency of deletion for 2 to 6 repeated shRNA cassettes and mathematically model the outcomes of different frequencies of deletion in gene therapy scenarios. We created 500+ clonal cell lines and found deletion frequencies ranging from 2 to 36% for most combinations. While the central positions were the most frequently deleted, there was no obvious correlation between the frequency or extent of deletion and the number of cassettes per combination. We modeled the progression of infection using combinations of 6 shRNAs with varying degrees of deletion. Ourin silico modeling indicated that if at least half of the transduced cells retained 4 or more shRNAs, the percentage of cells harboring multiple-shRNA resistant viral strains could be suppressed to < 0.1% after 13 years. This scenario afforded a similar protection to all transduced cells containing the full complement of 6 shRNAs.

Conclusion

Deletion of repeated expression cassettes within lentiviral vectors of up to 6 shRNAs can be significant. However, our modeling showed that the deletion frequencies observed here for 6× shRNA combinations was low enough that thein vivo suppression of replication and escape mutants will likely still be effective.  相似文献   

19.
Summary The ability to create artificial gene-clusters for genetic transformation could facilitate the development of crops with multiple engineered traist, or with traits which result from the expression of multiple genes. A simple method to assemble artificial gene-clusters was developed by designing a multiple cloning site consisting of an array of homing endonuclease cleavage sites into a single vector. These enzymes are also known as intron-or intein-encoded endonucleases, and have very long recognition sequences, which makes them very rare cutters. The resulting vectors are pUGA for microprojectile-mediated transformation, and pUGA2 for Agrobacterium-mediated transformation. In addition, a series of unidirectional shuttle vectors containing various combinations of homing endonuclease restriction sites was constructed. Gene cassettes can be cloned into individual shuttles, and then transferred to either pUGA or pUGA2 to construct artificial gene-clusters. To test the feasibility of this approach, a six-gene cluster was constructed and transformed into soybean via microprojectile bombardment and into tobacco via Agrobacterium. The genes were assayed for expression in both the T0 and T1 generations for three independent transgenics. Up to five of the six genes were expressed. Additional changes to the construction of individual gene cassettes may improve the frequency with which all genes in the cluster are expressed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号