首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
Questions: How do climate conditions and the site's ecohy‐ drological properties affect the age and size structure of natural Pinus sylvestris stands on pristine boreal mires? How do the long‐term stand dynamics on mires proceed as stands age? Do the mire stands reach a balanced, old‐growth stage? Location: Boreal mire forests in southern and northern Finland. Methods: Tree age and diameter distributions were analysed in 52 stands in two climate areas and in two mire site types with different ecohydrological properties. Temporal stand dynamics were examined by (1) comparing the graphs of the stands’ mean tree ages by diameter at breast height (1.3 m) classes and (2) describing the changes in stand characteristics and stand age and size structures as a function of stand dominant age in a chronosequence. Results: In the south, the DBH distributions were mostly unimodal and bell‐shaped in both site type groups. Age distributions were multimodal and flat in fully‐stocked sites but more uneven in sparsely forested composite sites. In the north, both the age and size distributions were clearly uneven in both site type groups. Tree age and size variation increased with stand age, but levelled out in the long term. Particularly in the south, the abundance of small trees decreased as stand age increased. Conclusions: The pine stands on pristine boreal mires are more dynamic than anticipated and are generally not characterised by a balanced, self‐perpetuating structure. Their dynamics reflect differences in climate and ecohydrology: on stocked sites in favourable boreal conditions, the stands showed structures typically resultant of inter‐tree competition processes that control tree growth and regeneration, whereas in harsh boreal climates, the tree regeneration process is ongoing diversifying the stand structure.  相似文献   

2.
We compared four types of 30‐year‐old forest stands growing on spoil of opencast oil shale mines in Estonia. The stand types were: (1) natural stands formed by spontaneous succession, and plantations of (2) Pinus sylvestris (Scots pine), (3) Betula pendula (silver birch), and (4) Alnus glutinosa (European black alder). In all stands we measured properties of the tree layer (species richness, stand density, and volume of growing stock), understory (density and species richness of shrubs and tree saplings), and ground vegetation (aboveground biomass, species richness, and species diversity). The tree layer was most diverse though sparse in the natural stands. Understory species richness per 100‐m2 plot was highest in the natural stand, but total stand richness was equal in the natural and alder stands, which were higher than the birch and pine stands. The understory sapling density was lower than 50 saplings/100 m2 in the plantations, while it varied between 50 and 180 saplings/100 m2 in the natural stands. Growing stock volume was the least in natural stands and greatest in birch stands. The aboveground biomass of ground vegetation was highest in alder stands and lowest in the pine stands. We can conclude that spontaneous succession promotes establishment of diverse vegetation. In plantations the establishment of diverse ground vegetation depends on planted tree species.  相似文献   

3.
Question: What is the spatial relationship between remaining trees and the establishment and development of recruited saplings? Location: The Pinus sylvestris forest Pinar de Valsaín, in the Sistema mountain range (central Spain). Methods: Three 0.5 ha plots have been analysed. The saplings were located in a 2 m x 2 m grid, characterizing their spatial pattern through a nested ANO VA. The spatial pattern of stems was analysed using the L(d) function. To analyse the spatial relationship between stems belonging to different cohorts, the intertype Lrs(d) function was used. Finally a new function Krx(d) is presented as a method to analyse the relationship between the spatial distribution of stems and the sapling density (a sampled continuous variable). Results: The mother trees show cluster pattern at scales of ca. 12 m ‐ 22 m, leading to a spatial pattern at 14 m–16 m for the saplings during the regeneration period. At the beginning of the shelter phase, saplings less than 1.30 m in height show spatial repulsion from the old crop at distances above 10 m, whereas taller saplings show repulsion at shorter distances, due to the suppression of sapling development near the mother trees. At the end of the regeneration period, saplings < 1.30 m appear under the last remaining mother tree canopies. Conclusions: In the stands analysed, located at the southern limit of Pinus sylvestris distribution, this species behaves as half‐shade tolerant. This study shows that the Krx(d) function might be widely applied to analyse the relationship between patterns that occur at different scales or between a point pattern and a continuous variable, being a useful tool for analysing some forest processes.  相似文献   

4.
We examined forest structure and regeneration in a 350‐ha forest dominated by Pinus sylvestris 31 yr after a wildfire in the Vienansalo wilderness, Russian Karelia. In most parts of the area, the 1969 fire was not stand replacing but had left larger trees alive so that the area generally remained forest covered. In some localities, however, all trees apparently died and distinct gaps were formed, suggesting that the fire severity varied considerably, contributing to increased variation in stand structure. Living and dead wood volumes were similar, 112 and 96 m3.ha‐1, respectively. The tree species proportions of dead vs living wood indicated that prior to fire disturbance Picea was more common in the area. Regeneration was abundant (saplings, ca. 14 000 ind.ha‐1, height 20 ‐200 cm) and tree seedling recruitment had occurred over a long period of time. Regeneration density was highest on the mesic Vaccinium‐Myrtillus forest site type, decreasing towards nutrient‐poor site types. The most common regeneration microsites were level ground (56% of saplings), immediate surroundings of decayed wood (23%) and depressions (11%). The high proportion of saplings on level ground suggests that after the fire regeneration conditions have been favourable across the whole forest floor. Nevertheless, the areas in the vicinity of decayed wood have been particularly important microsites for seedling establishment. The results provide an example of the effects of wildfire on forest structure in a natural Pinus sylvestris dominated forest, demonstrating the non stand replacing character of fire, high variability in stand structure and the abundance of post‐fire regeneration.  相似文献   

5.
The paper describes the structure and the developmental trends of old-growth Pinus sylvestris stands in the Wigry National Park, in north-eastern Poland. The stands represent a transitional zone between deciduous forests of Central Europe and boreal, coniferous forests of north-eastern Europe. Besides P. sylvestris, the most important tree species are Picea abies and Quercus robur. Among the subcanopy species, Corylus avellana and Sorbus aucuparia occur most frequently. On the basis of the data from 6 permanent sample plots (total size: 1.90 ha), several parameters and stand indices are analysed including species composition of the canopy and the regeneration, diameter distribution, age structure of main tree species, and the relationship between canopy and spatial dispersion of woody regeneration. The most striking feature of the stands studied is the almost complete absence of natural regeneration of P. sylvestris. This seems to be in contradiction with the apparently natural origin of this species in the stands, and a common occurrence of natural disturbances resulting in openings and gaps in forest canopy. The main tree species replacing P. sylvestris in the canopy are P. abies and Q. robur. Also increasing are some broad-leaved species typical of high fertility sites: Acer platanoides, Tilia cordata, Ulmus glabra, and Fraxinus excelsior. A shrub C. avellana occurs extensively competing with tree species and delaying tree replacement processes. While no direct data on the changes in the site conditions can be provided and the recovery hypothesis appears to be the most straightforward explanation of the changes in P. sylvestris stands, the possible role of the allogenic changes in environmental conditions (climate warming, nitrogen deposition) is also discussed.  相似文献   

6.
Question: How can we model above‐ground litterfall in Mediterranean conifer forests using remotely sensed and ground data, and geographic information systems (GIS)? Location: Eastern Mediterranean conifer forest of Turkey. Methods: Above‐ground litterfall from Mediterranean forest stands of Pinus nigra, Cedrus libani, Pinus brutia and Juniperus excelsa and mixed Abies cilicica, C. libani and P. nigra was modeled as a function of fractional tree cover using a regression tree algorithm, based on IKONOS and Landsat TM/ETM+data. Landsat TM/ETM+images for the study area were used to map actual stand patterns, based on a land‐cover map of species stands using a supervised classification. Results: Total amount of annual above‐ground litterfall for the entire study area (12 260 km2) was estimated at 417.2 Mg ha?1 for P. brutia, 291.1 Mg ha?1 for the mixed stand, 115.5 Mg ha?1 for P. nigra, 54.6 Mg ha?1 for J. excelsa and 45.9 Mg ha?1 for C. libani. The maps generated indicate the distribution of the seasonal amount of total above‐ground litterfall for different species and the distribution of species stands in the study area. There was an increase in the amount of above‐ground litterfall for P. brutia stand in summer, for J. excelsa in autumn and for C. libani, P. nigra and the mixed stand of A. cilicica, P. nigra and C. libani in winter. Conclusion: Application of this model helps to improve the accuracy of estimated litterfall input to soil organic carbon pools in the Mediterranean conifer forests.  相似文献   

7.
Aim There is increasing concern regarding sustainable management and restoration of planted forests, particularly in the Mediterranean Basin where pine species have been widely used. The aim of this study was to analyse the environmental and structural characteristics of Mediterranean planted pine forests in relation to natural pine forests. Specifically, we assessed recruitment and woody species richness along climatic, structural and perturbation gradients to aid in developing restoration guidelines. Location Continental Spain. Methods We conducted a multivariate comparison of ecological characteristics in planted and natural stands of main Iberian native pine species (Pinus halepensis, Pinus pinea, Pinus pinaster, Pinus nigra and Pinus sylvestris). We fitted species‐specific statistical models of recruitment and woody species richness and analysed the response of natural and planted stands along ecological gradients. Results Planted pine forests occurred on average on poorer soils and experienced higher anthropic disturbance rates (fire frequency and anthropic mortality) than natural pine forests. Planted pine forests had lower regeneration and diversity levels than natural pine forests, and these differences were more pronounced in mountain pine stands. The largest differences in recruitment – chiefly oak seedling abundance – and species richness between planted and natural stands occurred at low‐medium values of annual precipitation, stand tree density, distance to Quercus forests and fire frequency, whereas differences usually disappeared in the upper part of the gradients. Main conclusions Structural characteristics and patterns of recruitment and species richness differ in pine planted forests compared to natural pine ecosystems in the Mediterranean, especially for mountain pines. However, management options exist that would reduce differences between these forest types, where restoration towards more natural conditions is feasible. To increase recruitment and diversity, vertical and horizontal heterogeneity could be promoted by thinning in high‐density and homogeneous stands, while enrichment planting would be desirable in mesic and medium‐density planted forests.  相似文献   

8.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

9.
以北京地区油松(Pinus tabuliformis)人工林不同演替类型林分为研究对象,研究油松纯林、油松-栓皮栎(Quercus variabilis)混交林和栓皮栎纯林三种不同演替类型林分的空间结构、林下植被和土壤水分的变化规律及其相互作用关系。结果表明:(1)林分水平及垂直空间结构、草本层物种多样性、更新幼树生长、土壤持水和透气性能等指标在三种不同演替类型林分间差异显著(P<0.05),林分空间结构参数中的角尺度、林层指数和开敞度显著影响了各类型林分的灌草多样性,混交度、林层指数和大小比数显著影响了更新幼树的生长,混交度和林层指数显著影响了土壤水分的变化(P<0.05)。(2)松栎混交林灌草生物量、天然更新幼树的生长以及土壤水分物理状况均好于纯林,并主要受林分混交度和林层指数的共同作用。(3)各演替类型林分内均存在栓皮栎更新幼树,混交林栓皮栎更新幼树数量最多、长势最好,对林地资源的竞争最为激烈。因此,可以通过调整林分空间结构实现种间关系及林地资源的调控,以充分发挥森林生态系统的各项功能与价值。  相似文献   

10.
Spatial distribution of palatable and unpalatable plants can influence the foraging behaviour of herbivores, thereby changing plant‐damage probabilities. Moreover, the immediate proximity to certain plants can benefit other plants that grow below them, where toxicity or spines act as a physical barrier or concealment against herbivores. This paper presents the results of a multi‐scale experiment performed to test the effect of shrubs as protectors of tree saplings against herbivores and the mechanism involved in Mediterranean ecosystems. We performed a factorial design in two mountain ranges, similar in physiognomy and vegetation, planting saplings of a palatable tree, the maple (Acer opalus subsp. granatense), and an unpalatable tree, the black pine (Pinus nigra), under three different types of shrubs. We considered four experimental microhabitats: highly palatable shrub (Amelanchier ovalis), palatable but spiny shrub (Crataegus monogyna or Prunus ramburii), unpalatable spiny shrub (Berberis vulgaris subsp. australis) and control (gaps of bare soil without shrubs). Three main factors were found to determine the probability of sapling attack: sapling palatability, experimental microhabitat and plot. Palatable saplings (maples) were browsed much more than unpalatable ones (pines). The degree of protection provided by the shrub proved greater as its palatability decreased with respect to sapling palatability, the unpalatable spiny shrub being the safest microhabitat for palatable saplings and bare soil for unpalatable ones. The differences found in number of attacked saplings between plots may be attributable to differences in herbivore pressure. The community context in which interaction takes place, namely the characteristics of the neighbours and the intensity of herbivore pressure, are determining factors for understanding and predicting the damage undergone by a target plant species. The mechanism that best explains these results is associational avoidance of saplings that grow near to unpalatable shrubs. It is necessary to introduce this neighbour effect in theoretical models and food‐web approaches that analyse the plant–herbivore relationships, since it can strongly determine not only the intensity of the interaction, but also the spatial distribution and diversity of the plant community.  相似文献   

11.
Rantis  Polly-Anne  Johnson  James E. 《Plant Ecology》2002,159(1):103-115
Canopygaps are important in establishing a pool of natural regeneration in manytemperate forest ecosystems. Information on the role of gaps in loblolly pine(Pinus taeda L.) and pine-hardwood foreststands in the southeastern Coastal Plain of the United States is lacking.Accordingly, 12 small canopy gaps in mature pine and pine-hardwood standsin Petersburg National Battlefield, Virginia, were studied. Loblolly pineregeneration was significantly more abundant in canopy gaps as compared to theadjacent forest in both forest cover types. In four stands dominated by loblollypine, there were 750 saplings/ha in the gaps compared to only 125saplings/ha in the adjacent forest. Pine saplings dominated the regenerationspectrum in the gaps in the pine stands, while red maple (Acerrubrum L.) was more important in the adjacent forest. In fourpine-hardwood stands, regeneration in both the gaps and adjacent forestwas dominated by sweetgum (Liquidambar styracifluaL.) with importance values of 27% and 28%, respectively.There were no loblolly pine seedlings in the adjacent forest, but an average 313per ha in the gaps of the pine-hardwood stands. Within thegaps in both cover types, loblolly pine saplings were lower in stature thancompeting hardwood stems, leading to the conclusion that the gaps may form atemporary pool of pine regeneration. Without further stand disturbance, theprocess of gap closure may reduce the pine component to a secondary status, orperhaps eliminate it altogether.  相似文献   

12.
Question: What are tree mortality rates and how and why do they vary in late‐successional Picea abies‐dominated forests? Do observed tree mortality patterns allow comparative assessment of models of long‐term stand development? Location: Northern boreal Fennoscandia. Methods: We measured stand structure in 10 stands in two different areas. We determined age distributions and constructed a chronology of tree deaths by cross‐dating the years of death of randomly sampled dead trees. Results: The stands in the two areas had contrasting tree age distributions, despite similar live tree structure. In one area, stands were relatively even‐aged and originated following a stand‐replacing fire 317 years earlier. The stands in the second area had an uneven age structure and virtually no signs of past fires, suggesting a very long period since the last major disturbance. The younger stands were characterized by a high mortality rate and inter‐annual variation, which we attributed to senescence of the relatively even‐aged stands approaching the maximum age of P. abies. In contrast, the tree mortality rates in the older stands were low and relatively stable. Conclusions: Patterns of tree mortality were, to a large extent, dependent on the time since the last stand‐replacing disturbance, suggesting that northern boreal P. abies stands eventually reach a shifting mosaic state maintained through small‐scale dynamics, but the time needed to reach this state appears to be lengthy; even 300 years after a forest fire stands showed changes in patterns of tree mortality that were related to the developmental stage of the stands.  相似文献   

13.
Question: Do abiotic constraints maintain monospecific woodlands of Juniperus thurifera? What is the role of biotic (livestock) versus abiotic (climate) drivers in the recruitment and growth of the different tree species? Location: Cabrejas range, Soria, north‐central Spain, 1200 m altitude. Methods: Stand history was reconstructed using dendro‐ecology and spatial pattern analysis, combined with historical data of livestock abundances and climatic records. Results: J. thurifera establishment occurred in two distinct pulses, with a tree component establishing in the late 1800s to early 1900s. Quercus ilex and Pinus sylvestris establishment was evident only from the late 1970s onward. Recruitment events were related to reductions in livestock browsing. J. thurifera spatial structure was clumped and Q. ilex showed a short‐scale aggregation to J. thurifera trees and saplings. Radial growth trends of J. thurifera saplings, Q. ilex and P. sylvestris were negatively related to livestock density. Summer drought limited the radial growth of all the study species, and P. sylvestris and Q. ilex grew faster than J. thurifera even after considering an age effect. Conclusions: The differences in radial growth patterns and recruitment pulses between species indicate that livestock browsing and not abiotic factors is the main factor controlling plant succession and structural development. In this process, J. thurifera acts as a nurse plant, facilitating the establishment of other tree species. Under the current low pressure from herbivores, formerly pure J. thurifera woodlands will change towards dense stands of mixed species composition.  相似文献   

14.
Natural regeneration is the natural process by which plants replace themselves. It is a cost-effective way to re-establish vegetation, and it helps to preserve genetic identity and diversity. In this study, we investigated the natural regeneration of trees in three types of afforested stands in the Taihang Mountains, China, which were dominated by Robinia pseudoacacia (black locust), Quercus variabilis (Chinese cork oak) and Platycladus orientalis (Chinese arborvitae) respectively. A consistent pattern was found among the three types of stands, being that the density of seedlings was positively correlated with the overstory canopy cover and negatively correlated with the covers of shrub, herb and litter layers. While a positive correlation between the density of seedlings and stand age was found for the conifer stands, negative correlations were found for the two types of broadleaf stands. Correlations between the density of saplings and the stand attributes were not consistent among the three types of stands. The two types of broadleaf stands had higher densities of seedlings and saplings than the conifer stands. While the broadleaf stands had adequate recruits for regeneration, the conifer stands did not have enough recruits. Our findings suggest that the overstory canopy should be prevented from being disturbed, any reduction of the canopy cover will decrease the recruits and affect the regeneration.  相似文献   

15.
The population dynamics of Betula pubescens and Picea abies in a boreal forest near Kvikkjokk, northern Sweden, are governed by a process of storm gap regeneration similar to the gap regeneration described for boreo-nemoral forests. Cumulative age distribution curves, interpreted as static survivorship curves, lead to a simple theory of differential survival based on properties of the species, i.e. shade tolerance and relative growth rate. The theory is sustained by diameter and height distributions and by the spatial distributions of logs and of trees in different life-phases. Species of the field and ground layers respond differentially to gap formation and the ensuing successional stages. Browsing by moose (Alces alces) may prevent tree species, mainly Sorbus aucuparia, Betula pubescens and Pinus sylvestris, from developing into a tree layer. The regeneration ability for tree species growing in a stand at 460 m a.s.l. is limited compared with the regeneration at 330 m a.s.l., and typical storm gap formation involving more than one tree seems to occur rarely if at all, while overthrown trees with exposed rootplates are uncommon. Spruce at 460 m a.s.l. shows also a lower growth rate and a lower height/diameter ratio compared to the lower situated stands.  相似文献   

16.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

17.
The tree species composition, vertical stratification and patterns of spatial autocorrelation at the tree and quadrate (25 × 25 m) scales were studied in a natural mature PinuS sylvestris dominated forest in eastern Finland. For the analyses we mapped the locations and dimensions of trees taller than 10 m in a 9 ha (300 × 300 m) area, and within this area we mapped all trees taller than 0.3 m on a core plot of 4 ha (200 × 200 m). The overall tree size distribution was bimodal. the dominant layer and the understory forming the peak frequencies. Pinus sylvestris dominated the main canopy, together with scattered Betula pendula and Picea abies. Alnus incana, Populus tremula, Salix caprea, Sorbus aucuparia and Juniperus communis occurred only in the under- and middlestories. Autocorrelation analysis (semivarianee) of tree size variation revealed spatial patterns, which were strongly dependent on the size of trees included in the analysis. When all living trees, including the understory regeneration, were taken into account, the autocorrelation pattern ranged up to 35 m inter-tree distances, reflecting the spatial scale of understory regeneration patches. Competitive interaction among middle- and upperstory trees (height>10 m) had contrasting effects on autocorrelation pattern depending on spatial scale. At the fine scale, dominant trees suppressed their smaller close neighbors (asymmetric competition), which was shown as increased tree size variation at small inter-tree distances (<2 m). At slightly larger inter-tree distances, specifically among large trees of similar size, competition was more symmetrical, which resulted in decreased tree size variation at these inter-tree distances (3–4 m). This effect was seen most clearly in the dominant trees, there being a clear autocorrelation pattern in tree size up to inter-tree distances of ~4 m. At the quadrate scale (25 × 25 m) the analysis revealed high local variation in structural characteristics such as tree height diversity (THD), tree species diversity (H) and autocorrelation of tree height. The analysis suggests that naturally developed P. sylvestris forests exhibit complex small-scale patterns of structural heterogeneity and spatial autocorrelation in tree size. These patterns may be important for stand-scale habitat diversity and can have aggregated effects on ecosystem dynamics at larger spatial scales though their influence on the spread of disturbance and regeneration after disturbance.  相似文献   

18.
Question: Two questions about within‐stand spatial variability are addressed in this paper. How does species richness of tree regeneration respond to small‐scale ecological gradients, and what effect does natural Abies balsamea abundance have on the species richness of other tree regeneration? Location: A long‐term, gap‐silviculture experiment, Acadian mixed‐wood forest, Maine, USA. Methods: Eight stands treated with and without gap harvesting were sampled to capture sub‐stand heterogeneity of understorey tree regeneration concurrently with patterning of local stand conditions. Spatial and non‐spatial models were developed to test the relationships between two response variables [species richness of small (height ≥0.1 m, but <0.75 m) and large (height ≥0.75 m, but <1.4 m) regeneration] and five explanatory variables (depth to water table, percentage canopy transmittance, A. balsamea regeneration density, and overstorey basal area and species richness). Results: Despite high unexplained variance for all models, consistent associations among variables were found. Negative associations were found between: (1) the species richness of small regeneration and A. balsamea regeneration density and (2) the species richness of large regeneration and overstorey basal area. Positive associations were found between: (1) the species richness of small regeneration and both overstorey basal area and species richness and (2) the species richness of small and large regeneration and canopy transmittance. Conclusions: Promoting tree species diversity in Acadian mixed‐wood stands may not be achievable through the use of gap‐harvesting alone if the density of understorey Abies balsamea is not reduced either naturally or through silvicultural intervention.  相似文献   

19.
Abstract. We studied the characteristics of understorey regeneration on two sites with different fire history in a mature Pinus sylvestris forest in eastern Finland. The study area was a 4‐ha plot, which was divided into two parts based on fire history analysis. In one part the last fire event was a stand‐replacing fire in the early 19th century, after which the whole stand regenerated, while the other part of the study plot was subsequently burnt by a surface fire in 1906. Understorey P. sylvestris individuals were much more abundant in the area of the 1906 burn compared to the old burn. In both areas the size frequency distribution of living trees was bimodal, with frequency peaks at the < 5 cm and 30–150 cm height classes. In the old burn small understorey trees were mainly associated with microsites created by treefall disturbances while in the 1906 burn most small understorey trees occurred on vegetation‐covered microsites. This indicates that with increasing time since last fire establishment of new understorey trees becomes more restricted by the availability of microsites created by treefall disturbances. In both areas the proportion of vigorous small understorey trees was highest on decayed wood. In the older burn uprooted pits and mounds also had a significant proportion of healthy small understorey trees, while the majority of trees classified as seriously weakened or dying were growing on microhabitats characterized by undisturbed vegetation. Ripley's K‐function analyses showed that spatial distribution of understorey trees was clustered in both areas in all microsite types and clustering at small scales was most pronounced in understorey trees growing in uprooted spots or in association with decayed wood. The bivariate analysis showed a significant repulsion effect between large trees and understorey trees at intermediate spatial scales, indicating that competition had an effect on understorey tree distribution and this effect was more pronounced in the younger burn. The analysis suggests that in Pinus sylvestris forests the abundance, quality and spatial pattern of understorey tree population may vary considerably as a function of disturbance history.  相似文献   

20.
Abstract: To provide habitat for late-successional wildlife species, new ecosystem-based forest management practices aim to retain elements of complex stand structure, including live residual trees, dead wood legacies, and advanced regeneration, within managed stands. Predicting the effectiveness of these strategies is a challenge for species whose habitat relationships may involve multiple factors and can vary among sites. For 2 years, we live-trapped a common, late-successional microtine rodent, the southern red-backed vole (Myodes [formerly Clethrionomys] gapperi), in 40 1.4-ha boreal mixedwood sites in Ontario, Canada. Using a neighborhood-scale modeling approach, we related red-backed vole capture locations to spatially referenced measures of overstory trees, shrubs and saplings, downed woody debris (DWD), and forest floor substrate. We further assessed how associations with these features varied with availability of the features within a site and as a function of stand management history. In spring, red-backed voles were associated with trap stations that had, within a 26-m radius, a dense shrub layer, abundant late-decay DWD, coniferous understory and litter, and possibly, understory vegetation associated with moist conditions. Positive associations with shrub cover, late-decay DWD, and a moisture-associated understory were most apparent in sites in which these elements were scarce (e.g., <1,500 stems/ha of hardwood saplings and short shrubs; <0.8% projected ground cover of late-decay DWD). The importance of late-decay DWD; shade-tolerant, coniferous understory composition; and substrate varied depending on a site's management history, with each feature having a strong positive effect in 47–64-year-old stands that were harvested using horse skidding and weaker effects in both 31–40-year-old stands that were clearcut with mechanical skidding and >80-year-old fire-origin stands. Our models of fine-scale habitat relationships for red-backed voles may be useful in establishing structural retention guidelines suitable for wildlife species dependent on late-successional habitat structure. In this regard, retaining abundant DWD and 10–30% live trees at harvest may be effective management strategies for providing favorable habitat conditions at localized scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号