首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rantis  Polly-Anne  Johnson  James E. 《Plant Ecology》2002,159(1):103-115
Canopygaps are important in establishing a pool of natural regeneration in manytemperate forest ecosystems. Information on the role of gaps in loblolly pine(Pinus taeda L.) and pine-hardwood foreststands in the southeastern Coastal Plain of the United States is lacking.Accordingly, 12 small canopy gaps in mature pine and pine-hardwood standsin Petersburg National Battlefield, Virginia, were studied. Loblolly pineregeneration was significantly more abundant in canopy gaps as compared to theadjacent forest in both forest cover types. In four stands dominated by loblollypine, there were 750 saplings/ha in the gaps compared to only 125saplings/ha in the adjacent forest. Pine saplings dominated the regenerationspectrum in the gaps in the pine stands, while red maple (Acerrubrum L.) was more important in the adjacent forest. In fourpine-hardwood stands, regeneration in both the gaps and adjacent forestwas dominated by sweetgum (Liquidambar styracifluaL.) with importance values of 27% and 28%, respectively.There were no loblolly pine seedlings in the adjacent forest, but an average 313per ha in the gaps of the pine-hardwood stands. Within thegaps in both cover types, loblolly pine saplings were lower in stature thancompeting hardwood stems, leading to the conclusion that the gaps may form atemporary pool of pine regeneration. Without further stand disturbance, theprocess of gap closure may reduce the pine component to a secondary status, orperhaps eliminate it altogether.  相似文献   

2.
Questions: What influence do management practices and previous tree and shrub stand structure have on the occurrence and development of natural regeneration of Pinus sylvestris in Mediterranean mountain forests? How are the fine‐scale and environmental patterns of resources affected and what impact does this have on the distribution of the regeneration? Location: A Pinus sylvestris Mediterranean mountain forest in central Spain. Methods: Upperstory trees and regeneration (seedlings and saplings) were mapped in four 0.5‐ha plots located in two types of stand with different management intensities (even‐aged and uneven‐aged stands). Environmental variables were recorded at the nodes of a grid within the plots. The relationships between the upperstory and regeneration were evaluated by bivariate point pattern analysis; redundancy analysis ordination and variation partitioning were performed to characterize regeneration niches and the importance of the spatial component. Results: Seedlings and saplings presented a clumped structure under both types of management and their distribution was found to be related to the spatial distribution of favourable microsites. Regeneration was positively related to conditions of partial cover with high soil water content during the summer. More than half of the explained variance was spatially structured in both types of stand. This percentage was particularly high in the even‐aged stands where the pattern of regeneration was highly influenced by the gaps created by harvesting. Conclusions: The spatial distribution of the tree and shrub upperstory strongly influences regeneration patterns of P. sylvestris. Current management practices, promoting small gaps, partial canopy cover and moderate shade in even‐aged stands, or favouring tree and shrub cover in the case of uneven‐aged stands, appears to provide suitable conditions for the natural regeneration of P. sylvestris in a Mediterranean climate.  相似文献   

3.
Litterfall is a fundamental process in the nutrient cycle of forest ecosystems and a major component of annual net primary production (NPP). Despite its importance for understanding ecosystem energetics and carbon accounting, the dynamics of litterfall production following disturbance and throughout succession remain poorly understood in boreal forest ecosystems. Using a replicated chronosequence spanning 209 years following fire and 33 years following logging in Ontario, Canada, we examined the dynamics of litterfall production associated with stand development, overstory composition type (broadleaf, mixedwood, and conifer), and disturbance origin. We found that total annual litterfall production increased with stand age following fire and logging, plateauing in post-fire stands approximately 98 years after fire. Neither total annual litterfall production nor any of its constituents differed between young fire- or logging-originated stands. Litterfall production was generally higher in broadleaf stands compared with mixedwood and conifer stands, but varied seasonally, with foliar litterfall highest in broadleaf stands in autumn, and epiphytic lichen litterfall highest in conifer stands in spring. Contrary to previous assumptions, we found that the contribution of litterfall production to net primary production increased with stand age, highlighting the need for modeling studies of net primary productivity to account for the effects of stand age on litterfall dynamics.  相似文献   

4.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

5.
管涔山青扦(Picea wilsoni)天然林年龄结构及其动态的研究   总被引:3,自引:0,他引:3  
对种群年龄结构的研究表明,虽经人为频繁干扰,管涔山青扦天然林仍表现出异龄林结构特征,立木年龄范围超过一个龄级期,根据年龄结构特征值可分为相对同龄林、相对异龄林和异龄林3种类型。林下新一代种群的数量和结构受林冠郁闭度和结构的影响。具垂直郁闭型林冠的异龄林,林下更新数量充足,幼苗幼树年龄结构合理;而水平郁闭型林冠,不利于新一代种群的发生和发展。青扦种群年龄结构受种群发生和自疏两个过程的控制,林下种群的发生以小规模林冠空隙干扰下的连续更新为主。青扦华北落叶松混交林,在其共同适生范围内是某种干扰格局控制下的稳定群落  相似文献   

6.
To examine the effects of thinning intensity on wind vulnerability and regeneration in a coastal pine (Pinus thunbergii) forest, thinning with intensities of 20%, 30% and 50% was conducted in December 1997; there was an unthinned treatment as the control (total 8 stands). We re-measured the permanent sites to assess the regeneration characteristics 11 years after thinning. In the 50% thinned stand, seedlings aged from 2 to 10 years exhibited the highest pine seedling density and growth. The age composition ranged from 1–3 years with densities of 9.9 and 5.1 seedlings m−2 in 30% and 20% thinned stands; only 1-year-old seedlings with a density of 6.1 seedlings m−2 in the unthinned stand. Similar trends were found for the regeneration of broadleaved species such as Robinia pseudoacacia and Prunus serrulata. We speculate that the canopy openness and moss coverage contributed to the regeneration success in the 50% thinned stand, while the higher litter depth and lack of soil moisture induced the regeneration failure in the unthinned stand. The stands thinned at 20% or 30% were less favourable for pine regeneration than the stands thinned at 50%. Therefore, thinning with less than 30% canopy openness (20% and 30% thinned stands) should be avoided, and thinning at higher than 30% canopy openness (50% thinned stand, approximately 1500 stems ha−1 at ages 40–50 years) is suggested for increasing regeneration in the coastal pine forest. The implications of thinning-based silviculture in the coastal pine forest management are also discussed. The ongoing development of the broadleaved seedlings calls for further observations.  相似文献   

7.
Coarse woody debris (CWD) volume and diversity are vital attributes of forest ecosystems. However, despite their importance, their long-term dynamics associated with fire- or logging-origin and overstory type have not been examined in boreal forest. We hypothesize that (1) CWD compositional diversity increases with stand development whereas CWD volume follows a U-shaped pattern. Furthermore, we attempted to test if (2) CWD volume and compositional diversity converge for postlogged and postfire stands through stand development, and (3) mixedwoods have more CWD volume and greater compositional diversity than conifer or broadleaf overstory types. We sampled 72 stands ranging in age from 7 to 201 years in fire-origin stands and 7–31 years in managed stands with conifer, mixedwood, and broadleaf overstory types in central boreal Canada. For fire-origin stands, snag volume was 100–260 m3/ha in 7-year-old stands, 5–20 m3/ha in 25-year-old stands, and 25–60 m3/ha in older stands; downed woody debris (DWD) volume decreased from 7 to 72–90 year-old stands, increased in 124- to 139-year-old stands, then either decreased or increased in 201-year-old stands depending on overstory type. CWD diversity increased from 25 to 124–139 year-old and plateaued, but in 7-year-old stands, CWD diversity was as high as that in the 124 and up year-old age classes. Logging resulted in a smaller amount and lower size variability of CWD in 7-year-old stands, with a larger portion being fast-decomposing Betula papyrifera. Most CWD characteristics had not converged by approximately 30 years since disturbance between the two stand origins. More diverse CWD occurred in mixedwoods, but conifer stands contained the greatest CWD volume except in 7 year-old postfire stands. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. B. W. Brassard collected and analyzed data and wrote the paper. H. Y. H. Chen conceived and designed the study, analyzed data, and critiqued earlier drafts of the paper.  相似文献   

8.
Vetaas  Ole R. 《Plant Ecology》2000,146(2):137-144
Poor regeneration of oak forest has been observed in north America and Eurasia. In the Himalaya it has mainly been explained by anthropogenic pressures. This study analyses the regeneration of two Quercus semecarpifolia Sm. forests (2–3000 m a.s.l.), where one forest has almost nil disturbance and the other has different degrees of canopy disturbance. The relationships between biotic and abiotic environmental variables and the number of Quercus semecarpifolia seedlings and saplings (i.e., recruits <10 cm Diameter at Breast Height (DBH)) were analysed by means of Generalized Additive Models (GAM). The two forests were compared with respect to size-class distributions of mature trees (i.e., >10 cm DBH), and the number of recruits.The size-class distributions indicate that regeneration is most reliable in the nearly undisturbed forest. Most recruits were found under high canopy cover and high potential radiation. Canopy disturbance has a negative effect on the number of seedlings. Seedlings seem to prefer a pH of around 6, Loss-on-Ignition between 20 and 30 %, and total nitrogen between 2 and 3 %. In general, there were very few plots with saplings, and there was not a clear relationship between the number of saplings and the soil variables. The size-class diagrams indicate a lack of young trees in the disturbed forest, and it is hypothesized that fire may inhibit recruits reaching the canopy phase.  相似文献   

9.
Non-random seed shadows are commonly seen in plant species whose seeds are dispersed by animals, in particular by birds. The behaviour of birds can influence the spatial pattern of seed dispersal and, consequently, the entire regeneration process of fleshy-fruited trees. This study examined regeneration patterns in a fleshy-fruited tree species, rowan (Sorbus aucuparia L.), growing in West Carpathian subalpine spruce forests, focussing on two problems: the temporal relationship between rowan regeneration and gap formation, and the spatial relationship between rowan regeneration and stand structure. It was found that rowan seedlings and saplings were recruited in advance of gap formation. Establishment of new rowan individuals in gaps was infrequent, but gaps enhanced their regeneration nearby under spruce canopy, where they occurred densely in a narrow belt about 15 m wide. Inside spruce stands, the highest density of young rowans was directly under crowns, especially near trunk bases. Few rowan saplings were found growing under mature rowan trees. The presence of a rowan seedling and sapling bank determines whether rowans fill spruce stand gaps. Dense rowan groves can develop mainly in extensive but slowly expanding gaps.  相似文献   

10.
The removal of conifers from aspen (Populus tremuloides) stands is being undertaken throughout the western United States to restore aspen for local‐ and landscape‐level biodiversity. Current practices include mechanically removing conifers or hand thinning, piling, and burning cut conifers in and adjacent to aspen‐conifer stands. To evaluate the effectiveness of restoration treatments, we examined tree regeneration and herbaceous vegetation cover in thinned, thinned and pile burned, and non‐thinned control stands. Growth rates of small conifer saplings threatening to outcompete and replace aspen were also measured. Two to four years after pile burning, herbaceous vegetation cover within the footprint of burned piles (i.e. burn scars) was 35–73% of that in adjacent areas. Aspen was more likely to regenerate inside burn scars where fewer surrounding trees were true firs. Conifer seedlings were more likely to regenerate in burn scars where more of the surrounding trees were conifers (pine or fir) as opposed to aspen. Fir saplings had much slower growth than did aspen saplings. Overall, our findings show that restoration treatments are promoting desirable outcomes such as enhancing aspen regeneration but that follow‐up treatments will be needed to remove numerous conifer seedlings becoming established after restoration activities. Eliminating conifers, while they are small, growing slowly, and contributing little to fuel loads may be an economical way to prolong restoration treatment effectiveness.  相似文献   

11.
To contribute to a better understanding of the regeneration strategy of Betula albosinensis forests and the likely reasons behind either the successful recovery or failure after strip clearcutting, we compared the population structures and spatial patterns of B. albosinensis in eight B. albosinensis stands in Qinling Mountains, China. Four cut and four uncut stands were selected, and each sampled using a single large plot (0.25 ha). Results indicated that, on the one hand, B. albosinensis recruitment was scarce (average of 48 stems ha−1) in the uncut stands, relative to the mature population (average of 259 stems ha−1), suggesting a failure of recruitment. On the other hand, the subsequent regeneration approximately 50 years after the strip clearcutting showed that the density of the target species seedlings and saplings has increased significantly, and the current average density of seedlings and saplings was 156 stems ha−1. The clumped spatial pattern of B. albosinensis suggested that their regeneration was highly dependent on canopy disturbance. However, recruitment remained poor in the uncut stands because most gaps were small in scale. The successful regeneration of sunlight-loving B. albosinensis after strip clearcutting was attributed to the exposed land and availability of more sunlight. Bamboo density did not influence B. albosinensis recruitment in the uncut stands. However, stand regeneration was impeded after strip clearcutting; thus, removing bamboo is essential in improving the competitive status of B. albosinensis at the later stage of forest regeneration after clearcutting. The moderate severity of disturbance resulting from strip clearcutting reversed the degeneration trend of primary B. albosinensis stands. This outcome can help strike a balance between forest conservation and the demand for wood products by releasing space and exposing the forested land for recruitment. Life history traits and spatiotemporal disturbance magnitude are important factors to consider in implementing effective B. albosinensis regeneration strategies.  相似文献   

12.
Abstract. In order to explain conifer species recruitment in Canada's southeastern boreal forest, we characterized conifer regeneration microsites and determined how these microsites vary in abundance during succession. Microsite abundance was evaluated in deciduous, mixed and coniferous stands along a 234-yr postfire chronosequence. Conifers were most often found in relatively well-illuminated microsites, devoid of litter, especially broad-leaf litter, and with a reduced cover of lower vegetation (< 50 cm tall). Although associated with moss-rich forest floor substrates, Abies balsamea was the most ubiquitously distributed species. Picea glauca and especially Thuja occidentalis seedlings were frequently found on rotten logs. Light measurements did not show differences among seedling species nor between stand types. The percentage cover of broad-leaf litter decreased significantly during succession. Also, rotten logs covered with moss occupied a significantly larger area in the mid-successionnal stands than in early successional deciduous or late successional coniferous stands. The results suggest that the presence of specific forest floor substrate types is a factor explaining low conifer recruitment under deciduous stands, conifer codominance in the mid-successional stage, and delayed Thuja recolonization after fire. Results also suggest that some facilitation mechanism is responsible for the observed directional succession.  相似文献   

13.
Common yew (Taxus baccata L.) stands are recognized as prioritary habitats for biodiversity conservation within the European Union. The effects of browsing on the regeneration capacity and spatial dispersal of T. baccata recruits at the European southern limit of the species in the Mediterranean Basin have been herein studied. The efficacy of T. baccata recruitment has been evaluated at six localities in the Northern Sardinia mountains, which have similar altitude, climate, soil, and vegetation but have different types of uses (three were grazed by livestock and three were not). At each site, five habitats have been identified for T. baccata seed dispersal: reproductive female T. baccata canopy, reproductive female Ilex aquifolium canopy, non-fleshy-fruited tree canopy, fleshy-fruited shrubs, and open areas. The density of seedlings was found to be greater under fleshy-fruited trees (reproductive female T. baccata and I. aquifolium) than under shrubs, whereas the sapling density was higher in shrubby habitats, especially at grazed sites due to the mechanical protection afforded by the spiny shrubs against herbivores. Land use (LU) has been found to be the most important factor in determining the spatial distribution of seedlings and saplings in relation to forest habitats. Although browsers had an ephemeral but positive effect on seed germination through their trampling and the resultant scarification, this process eventually became ineffective as was shown by the occurrence of the lowest density of saplings in those habitats where the density of seedlings was the highest. The ultimate and most important effect of browsing was the sharp decrease in the density of saplings, and their almost complete extinction, in non-shrubby habitats. This study highlights the result that, in Mediterranean ecosystems, browsing constitutes the main negative factor on T. baccata seedling-sapling transition and furthermore confirms the necessity to preserve shrubby patches in the vicinity of reproductive female T. baccata and I. aquifolium to permit the regeneration of T. baccata in the presence of livestock. Moreover, at ungrazed sites, T. baccata is able to colonize non-shrubby shady habitats. The application of different management strategies to ungrazed and grazed sites should therefore be the main direction in the management and preservation of T. baccata stands in the Mediterranean region.  相似文献   

14.
《新西兰生态学杂志》2011,35(3):280-286
We compared establishment of Douglas fir (Pseudotsuga menziesii) and Corsican pine (Pinus nigra) seedlings in kanuka (Kunzea ericoides) and manuka (Leptospermum scoparium) shrubland to test the hypothesis that Douglas fir, because of its greater shade tolerance, is better able to establish in woody communities than pine species. Seed of the conifer species was sown under a range of canopy covers at six sites, the cover being low-statured vegetation in openings between stands, stand edges, and moderate and dense canopies. After three growing seasons, survival of Corsican pine seedlings was greatest in the open and declined progressively as canopy cover increased. This contrasted with Douglas fir, where survival was greatest at the canopy edge. Survival of Douglas fir seedlings significantly exceeded that of Corscican pine seedlings under dense canopy positions. Seedling numbers of both species declined significantly with increasing leaf area index of manuka, but not kanuka stands, where seedling numbers were lower. Leaf area index of manuka stands accounted for substantially greater variation in number and survival of Corsican pine than Douglas fir seedlings. It is concluded that Douglas fir is better able to establish in shaded environments in woody communities than Corsican pine; however, further monitoring is required to confirm the long-term survival of both species under the moderate and dense canopy positions in this trial.  相似文献   

15.
S. Catovsky  F. A. Bazzaz 《Oikos》2002,98(3):403-420
To address the role of canopy‐seedling feedbacks in the structure and dynamics of mixed conifer broad‐leaved forests in the eastern US, we monitored seedling regeneration patterns and environmental conditions in the understorey of stands dominated by either hemlock (Tsuga canadensis) or red oak (Quercus rubra) for three years. Hemlock seedlings were favoured over other species’ seedlings in hemlock stands (a true positive feedback), due to a combination of high seed inputs, high seedling emergence and relatively high seedling survival during the growing season, which allowed hemlock to remain dominant under its own canopy. Red oak stands favoured a suite of mid‐successional broad‐leaved species over hemlock. A more even age structure of broad‐leaved species in red oak stands revealed that high seedling survival in such stands were driving this feedback. Canopy‐mediated variations in both understorey light availability (1.5% for hemlock vs 3.5% for red oak) and soil pH (3.9 for hemlock vs 4.4 for red oak) were found to be the primary correlates of stand‐level differences in seedling regeneration dynamics. In mixed temperate forests in the eastern US, canopy‐seedling feedbacks could act to slow successional trajectories and contribute to the maintenance of a stable landscape structure over many generations.  相似文献   

16.
The persistence of seedlings in the forest understorey is of major importance for the maintenance and regeneration of canopy trees in several forested ecosystems. In the present study, we examine the small-scale spatial pattern of a mixed beech and oak seedling–sapling bank in two areas of an unmanaged temperate deciduous forest with different environmental conditions. We used environmental, biotic and spatial variables to establish the main factors that explain the spatial pattern of these seedling–sapling banks at different scales. The stand structure in both areas was similar, but while in plot A beech dominated the canopy, plot B was dominated by oaks. In both areas, established beech individuals showed a clear reverse J-shaped distribution, whereas established oaks showed a unimodal distribution with only a few young individuals. Seedlings of beech and oak were distributed in aggregates, whereas beech saplings had a random distribution. At broader scales, the abundance of seedlings and saplings is affected by the environment as well as by inter-species competition, while at finer scales the spatial pattern is mainly influenced by stochastic processes, probably related to seed predation and establishment. The structure of the seedling–sapling bank indicates an advantage of beech over oak as far as regeneration is concerned. Beech seedlings and saplings tolerate the stress induced by the canopy and the understorey and persist for many years, while oak seedlings decline in a few years. Therefore, if current conditions persist, after canopy opening beech seedlings and saplings can grow rapidly into the canopy and the stands will move towards beech dominance.  相似文献   

17.

Background

Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand.

Methods

Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover.

Results

Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights.

Conclusion

These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations.  相似文献   

18.
Previous studies have indicated that recruitment of Abies sachalinensis, a representative conifer species of northern Japan, decreased following single-tree selection harvesting in stands with dense dwarf bamboo understory. We tested the hypothesis that growth and survival of A. sachalinensis seedlings are reduced by canopy opening in that type of stand. A 0.75 ha study plot was examined, and all the seedlings (defined as trees with height 0.5–2 m) were identified and their shoot extensions measured for three years after single-tree selection harvesting (26% intensity in terms of basal area). The leader extensions of A. sachalinensis seedlings that experienced canopy opening were greatly improved. However, a negative effect on survival was also apparent; nearly 40% of seedlings died at the sites that experienced canopy opening. These results were supported by generalized linear models that examined variations of local harvesting intensity for individual seedlings. Despite the ability of A. sachalinensis to respond rapidly to exposure, some physiological stresses may have appeared, and presumably were amplified by co-occurring dwarf bamboos. With regard to the low seedling density (156 stems ha−1), common in this type of stands, local harvesting intensity in the selection system should be reduced to maintain survival of advanced regeneration, thus sustaining stand structure and composition.  相似文献   

19.
Quercus robur L. (pedunculate oak) and Quercus petraea (Matt.) Liebl. (sessile oak) are two European oak species of great economic and ecological importance. Even though both oaks have wide ecological amplitudes of suitable growing conditions, forests dominated by oaks often fail to regenerate naturally. The regeneration performance of both oak species is assumed to be subject to a variety of variables that interact with one another in complex ways. The novel approach of this research was to study the effect of many ecological variables on the regeneration performance of both oak species together and identify key variables and interactions for different development stages of the oak regeneration on a large scale in the field. For this purpose, overstory and regeneration inventories were conducted in oak dominated forests throughout southern Germany and paired with data on browsing, soil, and light availability. The study was able to verify the assumption that the occurrence of oak regeneration depends on a set of variables and their interactions. Specifically, combinations of site and stand specific variables such as light availability, soil pH and iron content on the one hand, and basal area and species composition of the overstory on the other hand. Also browsing pressure was related to oak abundance. The results also show that the importance of variables and their combinations differs among the development stages of the regeneration. Light availability becomes more important during later development stages, whereas the number of oaks in the overstory is important during early development stages. We conclude that successful natural oak regeneration is more likely to be achieved on sites with lower fertility and requires constantly controlling overstory density. Initially sufficient mature oaks in the overstory should be ensured. In later stages, overstory density should be reduced continuously to meet the increasing light demand of oak seedlings and saplings.  相似文献   

20.
Aim This study appraises historical fire regimes for Californian mixed‐conifer forests of the Sierra San Pedro Mártir (SSPM). The SSPM represents the last remaining mixed‐conifer forest along the Pacific coast still subject to uncontrolled, periodic ground fire. Location The SSPM is a north–south trending fault bound range, centred on 31°N latitude, 100 km SE of Ensenada, Baja California. Methods We surveyed forests for composition, population structure, and historical dynamics both spatially and temporally over the past 65 years using repeat aerial photographs and ground sampling. Fire perimeter history was reconstructed based on time‐series aerial photographs dating from 1942 to 1991 and interpretable back to 1925. A total of 256 1‐ha sites randomly selected from aerial photographs were examined along a chronosequence for density and cover of canopy trees, density of snags and downed logs, and cover of non‐conifer trees and shrubs. Twenty‐four stands were sampled on‐the‐ground by a point‐centred quarter method which yielded data on tree density, basal area, frequency, importance value, and shrub and herb cover. Results Forests experience moderately intense understory fires that range in size to 6400 ha, as well as numerous smaller, low intensity burns with low cumulative spatial extent. SSPM forests average 25–45% cover and 65–145 trees per ha. Sapling densities were two to three times that of overstory trees. Size‐age distributions of trees ≥ 4 cm dbh indicate multi‐age stands with steady‐state dynamics. Stands are similar to Californian mixed conifer forests prior to the imposition of fire suppression policy. Livestock grazing does not appear to be suppressing conifer regeneration. Main conclusions Our spatially‐based reconstruction shows the open forest structure in SSPM to be a product of infrequent, intense surface fires with fire rotation periods of 52 years, rather than frequent, low intensity fires at intervals of 4–20 years proposed from California fire‐scar dendrochronology (FSD) studies. Ground fires in SSPM were intense enough to kill pole‐size trees and a significant number of overstory trees. We attribute long fire intervals to the gradual build‐up of subcontinuous shrub cover, conifer recruitment and litter accumulation. Differences from photo interpretation and FSD estimates are due to assumptions made with respect to site‐based (point) sampling of fire, and nonfractal fire intensities along fire size frequency distributions. Fire return intervals determined by FSD give undue importance to local burns which collectively use up little fuel, cover little area, and have little demographic impact on forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号