首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We examined forest structure and regeneration in a 350‐ha forest dominated by Pinus sylvestris 31 yr after a wildfire in the Vienansalo wilderness, Russian Karelia. In most parts of the area, the 1969 fire was not stand replacing but had left larger trees alive so that the area generally remained forest covered. In some localities, however, all trees apparently died and distinct gaps were formed, suggesting that the fire severity varied considerably, contributing to increased variation in stand structure. Living and dead wood volumes were similar, 112 and 96 m3.ha‐1, respectively. The tree species proportions of dead vs living wood indicated that prior to fire disturbance Picea was more common in the area. Regeneration was abundant (saplings, ca. 14 000 ind.ha‐1, height 20 ‐200 cm) and tree seedling recruitment had occurred over a long period of time. Regeneration density was highest on the mesic Vaccinium‐Myrtillus forest site type, decreasing towards nutrient‐poor site types. The most common regeneration microsites were level ground (56% of saplings), immediate surroundings of decayed wood (23%) and depressions (11%). The high proportion of saplings on level ground suggests that after the fire regeneration conditions have been favourable across the whole forest floor. Nevertheless, the areas in the vicinity of decayed wood have been particularly important microsites for seedling establishment. The results provide an example of the effects of wildfire on forest structure in a natural Pinus sylvestris dominated forest, demonstrating the non stand replacing character of fire, high variability in stand structure and the abundance of post‐fire regeneration.  相似文献   

2.
Questions: What influence do management practices and previous tree and shrub stand structure have on the occurrence and development of natural regeneration of Pinus sylvestris in Mediterranean mountain forests? How are the fine‐scale and environmental patterns of resources affected and what impact does this have on the distribution of the regeneration? Location: A Pinus sylvestris Mediterranean mountain forest in central Spain. Methods: Upperstory trees and regeneration (seedlings and saplings) were mapped in four 0.5‐ha plots located in two types of stand with different management intensities (even‐aged and uneven‐aged stands). Environmental variables were recorded at the nodes of a grid within the plots. The relationships between the upperstory and regeneration were evaluated by bivariate point pattern analysis; redundancy analysis ordination and variation partitioning were performed to characterize regeneration niches and the importance of the spatial component. Results: Seedlings and saplings presented a clumped structure under both types of management and their distribution was found to be related to the spatial distribution of favourable microsites. Regeneration was positively related to conditions of partial cover with high soil water content during the summer. More than half of the explained variance was spatially structured in both types of stand. This percentage was particularly high in the even‐aged stands where the pattern of regeneration was highly influenced by the gaps created by harvesting. Conclusions: The spatial distribution of the tree and shrub upperstory strongly influences regeneration patterns of P. sylvestris. Current management practices, promoting small gaps, partial canopy cover and moderate shade in even‐aged stands, or favouring tree and shrub cover in the case of uneven‐aged stands, appears to provide suitable conditions for the natural regeneration of P. sylvestris in a Mediterranean climate.  相似文献   

3.
Questions: How does the time interval between subsequent stand‐replacing fire events affect post‐fire understorey cover and composition following the recent event? How important is fire interval relative to broad‐ or local‐scale environmental variability in structuring post‐fire understorey communities? Location: Subalpine plateaus of Yellowstone National Park (USA) that burned in 1988. Methods: In 2000, we sampled understorey cover and Pinus contorta density in pairs of 12–yr old stands at 25 locations. In each pair, the previous fire interval was either short (7–100 yr) or long (100–395 yr). We analysed variation in understorey species richness, total cover, and cover of functional groups both between site pairs (using paired t‐tests) and across sites that experienced the short fire intervals (using regression and ordination). We regressed three principal components to assess the relative importance of disturbance and broad or local environmental variability on post‐fire understorey cover and richness. Results: Between paired plots, annuals were less abundant and fire‐intolerant species (mostly slow‐growing shrubs) were more abundant following long intervals between prior fires. However, mean total cover and richness did not vary between paired interval classes. Across a gradient of fire intervals ranging from 7–100 yr, total cover, species richness, and the cover of annuals and nitrogen‐fixing species all declined while the abundance of shrubs and fire‐intolerant species increased. The few exotics showed no response to fire interval. Across all sites, broad‐scale variability related to elevation influenced total cover and richness more than fire interval. Conclusions: Significant variation in fire intervals had only minor effects on post‐fire understorey communities following the 1988 fires in Yellowstone National Park.  相似文献   

4.
Park  Andrew 《Plant Ecology》2003,169(1):1-20
Surface fire can modify spatial patterns and self-thinning in pine-oak ecosystems. Spatial pattern analyses were used to compare pattern development and interspecific spatial interactions in trees and seedlings in five Madrean pine-oak stands with different recent fire histories. Interspecific and intraspecific patterns were compared in small (< 15 cm dbh) and large (< 15 cm dbh) diameter classes of the pines (Pinus durangensis, P. teocote, and P. leiophylla) and oaks (Quercus sideroxylla, Q. crassifolia, and Q. laeta) that collectively dominated the five stands. Numbers of juvenile trees in 2.5 × 2.5 m subplots were correlated with cumulative distances to adult trees. Small pine and oak trees were intraspecifically clustered at all scales, irrespective of fire regime. Large pines were strongly clustered only in stands with longer fire-free intervals, and patterns of large versus small pine trees were regular or random in frequent fire stands. These patterns were consistent with fire-induced mortality of maturing trees under frequent fire. Large and small pines were segregated from small oaks at short and long distances in one stand with a 32-year fire-free interval, implying that two or more dynamic factors had produced regular patterns at different scales. Such regular spatial patterns at short distances were not seen in other stands. Therefore, there was little evidence for direct competition between oaks and pines. The results reported here are consistent with studies from other pine-oak ecosystems showing that different fire regime and site factors interact to influence stand development processes and relative dominance of pines and oaks. In some stands, the continued absence of fire could foster increasing tree densities and an intensification of local neighborhood effects, producing segregation of pine and oak species at longer distances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Aim There is increasing research attention being given to the role of interactions among natural disturbances in ecosystem processes. We studied the interactions between fire and spruce beetle (Dendroctonus rufipennis Kirkby) disturbances in a Colorado subalpine forest. The central questions of this research were: (1) How does fire history influence stand susceptibility to beetle outbreak? And conversely, (2) How does prior occurrence of a beetle outbreak influence stand susceptibility to subsequent fire? Methods We reconstructed the spatial disturbance history in a c. 4600 ha area by first identifying distinct patches in the landscape on aerial photographs. Then, in the field we determined the disturbance history of each patch by dating stand origin, fire scars, dates of mortality of dead trees, and releases on remnant trees. A geographical information system (GIS) was used to overlay disturbance by fire and spruce beetle. Results and main conclusions The majority of stands in the study area arose following large, infrequent, severe fires occurring in c. 1700, 1796 and 1880. The study area was also affected by a severe spruce beetle outbreak in the 1940s and a subsequent low‐severity fire. Stands that originated following stand‐replacing fire in the late nineteenth century were less affected by the beetle outbreak than older stands. Following the beetle outbreak, stands less affected by the outbreak were more affected by low‐severity fire than stands more severely affected by the outbreak. The reduced susceptibility to low‐severity fire possibly resulted from increased moisture on the forest floor following beetle outbreak. The landscape mosaic of this subalpine forest was strongly influenced by the interactions between fire and insect disturbances.  相似文献   

6.
Aim Climate warming and increased wildfire activity are hypothesized to catalyse biogeographical shifts, reducing the resilience of fire‐prone forests world‐wide. Two key mechanisms underpinning hypotheses are: (1) reduced seed availability in large stand‐replacing burn patches, and (2) reduced seedling establishment/survival after post‐fire drought. We tested for regional evidence consistent with these mechanisms in an extensive fire‐prone forest biome by assessing post‐fire tree seedling establishment, a key indicator of forest resilience. Location Subalpine forests, US Rocky Mountains. Methods We analysed post‐fire tree seedling establishment from 184 field plots where stand‐replacing forest fires were followed by varying post‐fire climate conditions. Generalized linear mixed models tested how establishment rates varied with post‐fire drought severity and distance to seed source (among other relevant factors) for tree species with contrasting post‐fire regeneration adaptations. Results Total post‐fire tree seedling establishment (all species combined) declined sharply with greater post‐fire drought severity and with greater distance to seed sources (i.e. the interior of burn patches). Effects varied among key species groups. For conifers that dominate present‐day subalpine forests (Picea engelmannii, Abies lasiocarpa), post‐fire seedling establishment declined sharply with both factors. One exception was serotinous Pinus contorta, which did not vary with either factor. For montane species expected to move upslope under future climate change (Larix occidentalis, Pseudotsuga menziesii, Populus tremuloides) and upper treeline species (Pinus albicaulis), establishment was unrelated to either factor. Greater post‐fire tree seedling establishment on cooler/wetter aspects suggested local topographic refugia during post‐fire droughts. Main conclusions If future drought and wildfire patterns manifest as expected, post‐fire tree seedling establishment of species that currently characterize subalpine forests could be substantially reduced. Compensatory increases from lower montane and upper treeline species may partially offset these reductions, but our data suggest important near‐ to mid‐term shifts in the composition and structure of high‐elevation forests under continued climate warming and increased wildfire activity.  相似文献   

7.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

8.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

9.
Treefall pits and mounds, formed when trees are uprooted by wind, influence an exceptionally broad range of phenomena in forests, having impacts on vegetation composition, soil formation, erosion, and soil respiration, among other processes. For example, treefall pits and mounds are known to have plant species composition with more pioneer species than nearby undisturbed soil; these microsites also are wetter (pits) or drier (mounds) than undisturbed soil; and have lower rates of soil respiration. Therefore, knowledge of the extent or coverage of these microsites will improve estimates of several processes as well as vegetation composition at the stand and landscape scale. Such information would be timely, given predictions of climate-change driven increases in severe weather that is the primary agent of pit and mound formation. However, to date, there have been no attempts to define a robust relationship to predict the sizes of these microsites across multiple forest types in eastern North America. Here, we summarize field measurement of the relationship between tree size and treefall pit and mound sizes, across ten catastrophic windthrow study sites. We find that for all ten sites pooled, simple ln–ln regression explains almost 54% of the variation in sizes of treefall pits (n = 1,039) and treefall mounds (n = 962) on the basis of tree diameter. This relationship spans numerous soil types, 31 tree species, and tree sizes ranging from 5 cm to greater than 105 cm diameter. Such a relationship may be coupled with information on the severity of disturbance (for example, proportion of stems uprooted) and pre-disturbance tree size structure, to provide a basis for predicting the area covered by pit and mound microsites at the landscape scale, and thereby a basis to frame expected impacts on soil formation, carbon cycling, vegetation establishment, and other ecological, edaphic, and biogeochemical processes.  相似文献   

10.
  • One of the most important threats to peatland ecosystems is drainage, resulting in encroachment of woody species. Our main aim was to check which features – overstorey or understorey vegetation – are more important for shaping the seedling bank of pioneer trees colonising peatlands (Pinus sylvestris and Betula pubescens). We hypothesised that tree stand parameters will be more important predictors of natural regeneration density than understorey vegetation parameters, and the former will be negatively correlated with species diversity and richness and also with functional richness and functional dispersion, which indicate a high level of habitat filtering.
  • The study was conducted in the ‘Zielone Bagna’ nature reserve (NW Poland). We assessed the structure of tree stands and natural regeneration (of B. pubescens and P. sylvestris) and vegetation species composition. Random forest and DCA were applied to assess relationships between variables studied.
  • Understorey vegetation traits affected tree seedling density (up to 0.5‐m height) more than tree stand traits. Density of older seedlings depended more on tree stand traits. We did not find statistically significant relationships between natural regeneration densities and functional diversity components, except for functional richness, which was positively correlated with density of the youngest tree seedlings.
  • Seedling densities were higher in plots with lower functional dispersion and functional divergence, which indicated that habitat filtering is more important than competition. Presence of an abundant seedling bank is crucial for the process of woody species encroachment on drained peatlands, thus its dynamics should be monitored in protected areas.
  相似文献   

11.
Seedlings of six major European temperate forest tree species (Fagus sylvatica, Acer pseudoplatanus, Quercus robur, Taxus baccata, Abies alba, Pinus sylvestris) were exposed to 360, 500, and 660 μL CO2 L?1 in the understorey of a 120‐y‐old forest over two growing seasons. Seedlings rooted in the natural forest soil within 36 open‐top chambers (12 OTCs per CO2 treatment), each with a different known quantum flux density (QFD) ranging from 0.36 to 2.16 mol m?2 d?1 (= 0.8% to 4.8% of full sun). In contrast to a frequent assumption the natural CO2 concentration in the understorey is close to the ambient concentration in the free atmosphere during daytime. The CO2‐effect on seedling growth differed greatly among species and was strongly codetermined by microsite‐specific QFD. Biomass production in the deep‐shade tolerant species Fagus and Taxus increased by 73% and 37% under elevated CO2 in low QFD microsites but was not significantly different among CO2‐treatments in high QFD microsites. The less shade‐tolerant species Acer, Quercus, and Abies showed no significant response to elevated CO2 in low QFD microsites, but increased their biomass by 39%, 25%, and 55% in high QFD microsites. In the shade‐intolerant Pinus, seedling survival was too low for a safe conclusion. Our data showed that the largest relative responses to increasing CO2 occurred at a comparatively small increase from 360 to 500 μL L?1 with only small and non‐significant changes with a further increase to 660 μL L?1. Subtle shifts in the availability of light can totally reverse interspecific differences in the CO2 response. Given these different responses, we conclude that increasing atmospheric CO2 is likely to induce changes in species composition of temperate forests due to altered chances of recruitment. However, these shifts will depend on light patterns in the understorey, and thus on canopy structure, disturbance patterns and forest management.  相似文献   

12.
Aim The historical variability of fire regimes must be understood in the context of drivers of the occurrence of fire operating at a range of spatial scales from local site conditions to broad‐scale climatic variation. In the present study we examine fire history and variations in the fire regime at multiple spatial and temporal scales for subalpine forests of Engelmann spruce–subalpine fir (Picea engelmannii, Abies lasiocarpa) and lodgepole pine (Pinus contorta) of the southern Rocky Mountains. Location The study area is the subalpine zone of spruce–fir and lodgepole pine forests in the southern sector of Rocky Mountain National Park (ROMO), Colorado, USA, which straddles the continental divide of the northern Colorado Front Range (40°20′ N and 105°40′ W). Methods We used a combination of dendroecological and Geographic Information System methods to reconstruct fire history, including fire year, severity and extent at the forest patch level, for c. 30,000 ha of subalpine forest. We aggregated fire history information at appropriate spatial scales to test for drivers of the fire regime at local, meso, and regional scales. Results The fire histories covered c. 30,000 ha of forest and were based on a total of 676 partial cross‐sections of fire‐scarred trees and 6152 tree‐core age samples. The subalpine forest fire regime of ROMO is dominated by infrequent, extensive, stand‐replacing fire events, whereas surface fires affected only 1–3% of the forested area. Main conclusions Local‐scale influences on fire regimes are reflected by differences in the relative proportions of stands of different ages between the lodgepole pine and spruce–fir forest types. Lodgepole pine stands all originated following fires in the last 400 years; in contrast, large areas of spruce–fir forests consisted of stands not affected by fire in the past 400 years. Meso‐scale influences on fire regimes are reflected by fewer but larger fires on the west vs. east side of the continental divide. These differences appear to be explained by less frequent and severe drought on the west side, and by the spread of fires from lower‐elevation mixed‐conifer montane forests on the east side. Regional‐scale climatic variation is the primary driver of infrequent, large fire events, but its effects are modulated by local‐ and meso‐scale abiotic and biotic factors. The low incidence of fire during the period of fire‐suppression policy in the twentieth century is not unique in comparison with the previous 300 years of fire history. There is no evidence that fire suppression has resulted in either the fire regime or current forest conditions being outside their historic ranges of variability during the past 400 years. Furthermore, in the context of fuel treatments to reduce fire hazard, regardless of restoration goals, the association of extremely large and severe fires with infrequent and exceptional drought calls into question the future effectiveness of tree thinning to mitigate fire hazard in the subalpine zone.  相似文献   

13.
G. Ne'eman  H. Lahav  I. Izhaki 《Oecologia》1992,91(3):365-370
Summary The spatial distribution of seedlings of the dominant perennial plant species (Pinus halepensis, Cistus salviifolius, Rhus coriaria) and may annual species was studied after a wild fire in an eastern Mediterranean pine forest. The spatial distribution of all seedlings is affected by the location of the old burned pine trees. Seedling density of Pinus and Cistus is higher at a distance from the burned pine canopy and lower near the burned pine trunk. It is also higher beneath small burned pine trees than under big ones. Rhus seedling density is higher under big burned pine trees and also near the burned trunks. Seedlings of Pinus, Cistus and Rhus growing under the burned canopy of big pine trees tend to be taller than seedlings under small ones or outside the burned canopy. Most annual species germinate and establish themselves outside the burned canopies, and only a few annual species are found beneath them. It is suggested that variation in the heat of the fire, in the amount of ash between burned pine trees of different sizes, and in the distance from the burned canopy are responsible for the observed pattern of seedling distribution. The possible ecological significance of the spatial pattern of seedlings distribution and their differential growth rate are discussed.  相似文献   

14.
Natural protected areas are critically important in the effort to prevent large‐scale megafaunal extinctions caused by hunting and habitat degradation. Yet such protection can lead to rapid increases in megafauna populations. Understanding ecosystem‐scale responses of vegetation to changing megafaunal populations, such as the case of the African elephant Loxodonta africana in savannas, requires large‐scale, high‐resolution monitoring over time. From 2008 to 2014, we repeatedly surveyed the fate of more than 10.4 million woody plant canopies throughout the Kruger National Park, South Africa using airborne Light Detection and Ranging (LiDAR), to determine the relative importance of multiple environmental, biotic and management factors affecting treefall rates and patterns. We report a mean biennial treefall rate of 8 trees or 12% ha?1, but with heterogeneous patterns of loss in both space and time. Throughout Kruger, the influence of elephant density on treefall was matched only by spatial variation in soils and elevation, and all three factors co‐dominated park‐wide treefall patterns. Elephant density was up to two times more influential than fire frequency in determining treefall rates, and this pattern was most pronounced for taller trees (> 2 m in height). Our results suggest that confining megafauna populations to protected areas, or reintroducing them into former or new habitat, can greatly alter the structure and functioning of the host ecosystem. Conservation strategies will need to accommodate and manage these massive ecological changes in the effort to save megafauna from extinction, without compromising system functionality.  相似文献   

15.
Question: What is the relative importance of low‐ and high‐severity fires in shaping forest structure across the range of Pinus ponderosa in northern Colorado? Location: Colorado Front Range, USA. Methods: To assess severities of historic fires, 24 sites were sampled across an elevation range of 1800 to 2800 m for fire scars, tree establishment dates, tree mortality, and changes in tree‐ring growth. Results: Below 1950 m, the high number of fire scars, scarcity of large post‐fire cohorts, and lack of synchronous tree mortality or growth releases, indicate that historic fires were of low severity. In contrast, above 2200 m, fire severity was greater but frequency of widespread fires was substantially less. At 18 sites above 1950 m, 34 to 80% of the live trees date from establishment associated with the last moderate‐ to high‐severity fire. In these 18 sites, only 2 to 52% of the living trees pre‐date these fires suggesting that fire severities prior to any effects of fire suppression were sufficient to kill many trees. Conclusions: These findings for the P. ponderosa zone above ca. 2200 m (i.e. most of the zone) contradict the widespread perception that fire exclusion, at least at the stand scale of tens to hundreds of hectares, has resulted in unnaturally high stand densities or in an atypical abundance of shade‐tolerant species. At relatively mesic sites (e.g. higher elevation, north‐facing), the historic fire regime consisted of a variable‐severity regime, but forest structure was shaped primarily by severe fires rather than by surface fires.  相似文献   

16.
The concept that vegetation structure (and faunal habitat) develops predictably with time since fire has been central to understanding the relationship between fire and fauna. However, because plants regenerate after fire in different ways (e.g. resprouting from above‐ground stems vs. underground lignotubers), use of simple categories based on time since fire might not adequately represent post‐fire habitat development in all ecosystems. We tested the hypothesis that the post‐fire development of faunal habitat structure differs between ecosystems, depending on fire regeneration traits of the dominant canopy trees. We measured 12 habitat components at sites in foothill forests (n = 38), heathy woodlands (n = 38) and mallee woodlands (n = 98) in Victoria, Australia, and used generalised additive models to predict changes in each variable with time since fire. A greater percentage of faunal habitat variables responded significantly to time since fire in mallee woodlands, where fires typically are stand‐replacing, than in foothill forests and heathy woodlands, where canopy tree stems generally persist through fire. In the ecosystem with the highest proportion of epicormic resprouters (foothill forests), only ground cover and understorey vegetation responded significantly to time since fire, compared with all but one variable in the ecosystem dominated by basal resprouters (mallee woodlands). These differences between ecosystems in the post‐fire development of key habitat components suggest there may also be fundamental differences in the role of fire in shaping the distribution of fauna. If so, this challenges the way in which many fire‐prone ecosystems currently are categorised and managed, especially the level of dependence on time since fire and other temporal surrogates such as age‐classes and successional states. Where time since fire is a poor surrogate for habitat structural development, additional complexity (e.g. fire severity, topography and prior land‐use history) could better capture processes that determine faunal occurrence in fire‐prone ecosystems.  相似文献   

17.
Question: How do trees die in high‐mortality and low‐mortality Amazonian forest regions? Why do trees die in different ways? Location: Humid, lowland forests in Amazonian Peru and Venezuela. Methods: Patterns of multiple treefall and mode of death (standing, broken or uprooted) were recorded for trees ≥10 cm in diameter in permanent plots. Logistic regression was used to relate mode of death to tree diameter, relative growth rate and wood density. Results: Frequency of multiple death events was higher in high‐mortality northwestern (NW) than in low‐mortality northeastern (NE) Amazonia, but these events were small, averaging two trees killed per multiple death event. Breakage was the dominant known mode of death (51±8%) in the NW, with half of fatal breakages caused by other treefalls or breakages. Small and slow‐growing trees were more prone to breaking than uprooting. In NE Amazonia, the dominant known mode of death was standing (48±10%); these trees tended to be relatively large and slow growing. Broken trees in NE forests have a lower wood density than uprooted trees. Conclusions: The major mortality mechanisms differ in the two regions. In the NW it involves an interaction between physiological failure and mechanical failure (small size, slow growth and broken mode). In the NE it is mainly driven by physiological failure (large size, slow growth and standing mode). We propose that by creating different‐sized gaps the different dominant modes of death would favour species from different functional groups and so help to maintain the contrasting functional composition and mortality rates of the two regions.  相似文献   

18.
Reyes  O.  Casal  M. 《Plant Ecology》2004,175(1):81-89
Fire modifies the germination of seeds of numerous species. One of the fire factors that cause these modifications is the ash. This study analysed the germination of seeds of Pinus sylvestris L., Pinus nigra Arn. Pinus radiata D. Don and Pinus pinaster Aiton, subjected to different ash treatments, and the development of seedlings that grew in these conditions for 14 weeks. We obtained the ash by completely burning leaves and small twigs from the most abundant woody species in populations of pines. The ash treatments applied were as follows: Control (without ash), Low (half of the amount registered in a fire), Medium (equal to the amount registered in a fire) and High (double the amount registered in a fire). Germination took place on paper inside Petri dishes and in soil, and growth was only analysed for the plants that grew in the soil. For all species, and especially P. nigra, germination rate decreased as the amount of ash applied increased. The negative effects of the ash were more apparent following treatments in Petri dishes than in the soil. In the dishes, the average germination time varies little between the four species of pine. In soil, the average germination time is more prolonged, and only some differences were observed between treatments in P. sylvestris and P. nigra. In these species the high treatment significantly increased the average germination time. We found a greater sensitivity of P. sylvestris and P. nigra to the addition of ash, showing a higher seedling mortality rate. However, it appears that seedling development (length and weight) was not affected in any of the species through the addition of ash. These tests allow us to deduce that, in P. sylvestris, P. nigra, P. radiata and P. pinaster, the ash produced by forest fires has an inhibiting effect on germination and little effect on the development of seedlings in the first months of life. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
20.
Aim Fire affects the structure and dynamics of ecosystems world‐wide, over long time periods (decades and centuries) and at large spatial scales (landscapes and regions). A pressing challenge for ecologists is to develop models that explain and predict faunal responses to fire at broad temporal and spatial scales. We used a 105‐year post‐fire chronosequence to investigate small mammal responses to fire across an extensive area of ‘tree mallee’ (i.e. vegetation characterized by small multi‐stemmed eucalypts). Location The Murray Mallee region (104,000 km²) of semi‐arid Australia. Methods First, we surveyed small mammals at 260 sites and explored the fire responses of four species using nonlinear regression models. Second, we assessed the predictive accuracy of models using cross‐validation and by testing with independent data. Third, we examined our results in relation to an influential model of animal succession, the habitat accommodation model. Results Two of four study species showed a clear response to fire history. The distribution of the Mallee Ningaui Ningaui yvonneae, a carnivorous marsupial, was strongly associated with mature vegetation characterized by its cover of hummock grass. The occurrence of breeding females was predicted to increase up to 40–105 years post‐fire, highlighting the extensive time periods over which small mammal populations may be affected by fire. Evaluation of models for N. yvonneae demonstrated that accurate predictions of species occurrence can be made from fire history and vegetation data, across large geographical areas. The introduced House Mouse Mus domesticus was the only species positively associated with recently burnt vegetation. Main conclusions Understanding the impact of fire over long time periods will benefit ecological and conservation management. In this example, tracts of long‐unburnt mallee vegetation were identified as important habitat for a fire‐sensitive native mammal. Small mammal responses to fire can be predicted accurately at broad spatial scales; however, a conceptual model of post‐fire change in community structure developed in temperate Australia is not, on its own, sufficient for small mammals in semi‐arid systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号