首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The genomic sequences within the alpha-block (approximately 288-310 kb) of the human and chimpanzee MHC class I region contains ten MHC class I genes and three MIC gene fragments grouped together within alternating duplicated genomic segments or duplicons. In this study, the chimpanzee and human genomic sequences were analyzed in order to determine whether the remnants of the ERVK9 and other retrotransposon sequences are useful genomic markers for reconstructing the evolutionary history of the duplicated MHC gene families within the alpha-block. A variety of genes, pseudogenes, autologous DNA transposons and retrotransposons such as Alu and ERVK9 were used to categorize the ten duplicons into four distinct structural groups. The phylogenetic relationship of the ten duplicons was examined by using the neighbour joining method to analyze transposon sequence topologies of selected Alu members, LTR16B and Charlie9. On the basis of these structural groups and the phylogeny of the duplicated transposon sequences, a duplication model was reconstructed involving four multipartite tandem duplication steps to explain the organization and evolution of the ten duplicons within the alpha-block of the chimpanzee and human. The phylogenetic analysis and inferred duplication history suggests that the Patr/HLA-F was the first MHC class I gene to have been fixed and not required as a precursor for further duplication within the alpha-block of the ancestral species.  相似文献   

3.
Using a data set of protein translations associated with map positions in the human genome, we identified 1520 mapped highly conserved gene families. By comparing sharing of families between genomic windows, we identified 92 potentially duplicated blocks in the human genome containing 422 duplicated members of these families. Using branching order in the phylogenetic trees, we timed gene duplication events in these families relative to the primate-rodent divergence, the amniote-amphibian divergence, and the deuterostome-protostome divergence. The results showed similar patterns of gene duplication times within duplicated blocks and outside duplicated blocks. Both within and outside duplicated blocks, numerous duplications were timed prior to the deuterostome-protostome divergence, whereas others occurred after the amniote-amphibian divergence. Thus, neither gene duplication in general nor duplication of genomic blocks could be attributed entirely to polyploidization early in vertebrate history. The strongest signal in the data was a tendency for intrachromosomal duplications to be more recent than interchromosomal duplications, consistent with a model whereby tandem duplication-whether of single genes or of genomic blocks-may be followed by eventual separation of duplicates due to chromosomal rearrangements. The rate of separation of tandemly duplicated gene pairs onto separated chromosomes in the human lineage was estimated at 1.7 x 10(-9) per gene-pair per year.  相似文献   

4.
Duplications are an important mechanism for the emergence of genetic novelties. Reports on duplicated genes are numerous, and mechanisms for polyploidization or local gene duplication are beginning to be understood. When a local duplication is studied, searches are usually done gene-by-gene, and the size of duplicated segments is not often investigated. Therefore, we do not know if the gene in question has duplicated alone or with other genes, implying that "en bloc" duplications are poorly studied. We propose a method for identification of "en bloc" duplication using mapping, phylogenetic and statistical analyses. We show that two segments present in the major histocompatibility complex (MHC) region of human chromosome 6 have resulted from an "en bloc" duplication that took place between divergence of amniotes and methaterian/eutherian separation. These segments contain members of the same multigenic families, namely olfactory receptors genes, genes encoding proteins containing B30.2 domain, genes encoding proteins containing immunoglobulin V domain and MHC class I genes. We will discuss the fact that olfactory receptors and MHC genes have undergone positive selection, which could have helped in fixation of the surrounding genes.  相似文献   

5.

Background  

The human chromosomes 2q, 7, 12q and 17q show extensive intra-genomic homology, containing duplicate, triplicate and quadruplicate paralogous regions centered on the HOX gene clusters. The fact that two or more representatives of different gene families are linked with HOX clusters is taken as evidence that these paralogous gene sets might have arisen from a single chromosomal segment through block or whole chromosome duplication events. This would imply that the constituent genes including the HOX clusters reflect the architecture of a single ancestral block (before vertebrate origin) where all of these genes were linked in a single copy.  相似文献   

6.
J. H. Nadeau  D. Sankoff 《Genetics》1997,147(3):1259-1266
Duplicated genes are an important source of new protein functions and novel developmental and physiological pathways. Whereas most models for fate of duplicated genes show that they tend to be rapidly lost, models for pathway evolution suggest that many duplicated genes rapidly acquire novel functions. Little empirical evidence is available, however, for the relative rates of gene loss vs. divergence to help resolve these contradictory expectations. Gene families resulting from genome duplications provide an opportunity to address this apparent contradiction. With genome duplication, the number of duplicated genes in a gene family is at most 2(n), where n is the number of duplications. The size of each gene family, e.g., 1, 2, 3, . . . , 2(n), reflects the patterns of gene loss vs. functional divergence after duplication. We focused on gene families in humans and mice that arose from genome duplications in early vertebrate evolution and we analyzed the frequency distribution of gene family size, i.e., the number of families with two, three or four members. All the models that we evaluated showed that duplicated genes are almost as likely to acquire a new and essential function as to be lost through acquisition of mutations that compromise protein function. An explanation for the unexpectedly high rate of functional divergence is that duplication allows genes to accumulate more neutral than disadvantageous mutations, thereby providing more opportunities to acquire diversified functions and pathways.  相似文献   

7.
Hu S  Wang H  Knisely AA  Reddy S  Kovacevic D  Liu Z  Hoffman SM 《Genetica》2008,133(2):215-226
The evolution of gene families can be best understood by studying the modern organization and functions of family members, and by comparing parallel families in different species. In this study, the CYP2ABFGST gene cluster has been characterized in rat and compared to the syntenic clusters in mouse and human, providing an interesting example of gene family evolution. In the rat, 18 loci from six subfamilies have been identified by specifically amplifying and sequencing gene fragments from cloned DNA, and have been exactly placed on chromosome 1. The overall organization of the gene cluster in rat is relatively simple, with genes from each subfamily in tandem, and is more similar to the mouse than to the human cluster. We have reconstructed the probable structure of the CYP2ABFGST cluster in the common ancestor of primates and rodents, and inferred a model of the evolution of this gene cluster in the three species. Numerous nontandem and block duplications, inversions, and translocations have occurred entirely inside the cluster, indicating that pairing between duplicate genes is keeping the rearrangements within the cluster region. The initial tandem duplication of a CYP2 gene in an early mammalian ancestor has made this region particularly subject to such localized rearrangements. Even if duplicated genes do not have a large-scale effect on chromosomal rearrangements, on a local level clustered gene families may have contributed significantly to the genomic complexity of modern mammals.  相似文献   

8.
Careful analysis of G-band patterns in various rodent families allows identification of homology and thus accurate prediction of gene map positions. However, conclusions based on the synteny of genes without a careful study of chromosome evolution and G-band homology can be misleading. We tested these generalizations by means of G-band analysis and in situ hybridization with three genes in Chinese hamster (Cricetulus griseus, CGR) chromosomes. The location of the adenosine deaminase gene, previously mapped by somatic cell hybrid panels, was confirmed and further sublocalized on CGR 6q1. Although transferrin and uridine monophosphate synthetase are localized to adjacent bands on human chromosome 3 (3q21 and 3q13, respectively), we report that these genes are widely separated on CGR 4q2 and 4p2, respectively.  相似文献   

9.
《Gene》1997,189(2):235-244
The cDNA and genomic clones for the human counterpart of the mouse mammary tumor gene Int3 were isolated and sequenced. We designated this human major histocompatibility complex (MHC) class III gene as NOTCH4, since very recently, by sequencing cDNA clones, the complete form of the mouse proto-oncogene Int3 has been clarified and named Notch4. The present human NOTCH4 sequence is the first example of the genomic sequence for the extracellular portion of the mammalian Notch4, and by comparing it with the mouse Notch4 cDNA sequence, the exon/intron organization was clarified. The comparison of the predicted amino acid sequence of human NOTCH4 with those of other Notch homologues of a wide range of species revealed four subfamilies for mammalian Notch. In the protein coding region of human NOTCH4, we found (CTG)n repeats showing a variable number tandem repeat (VNTR) polymorphism for different human leukocyte antigen (HLA) haplotypes. Ten genes mapped on 6p21.3, including NOTCH4, were found to have counterparts structurally and functionally similar to those mostly mapped on 9q33-q34, indicating segmental chromosome duplication during the course of evolution. Similarity of genes on chromosomes 1, 6, 9 and 19 was also discussed.  相似文献   

10.
Cox PR  Zoghbi HY 《Genomics》2000,63(1):97-107
Tropomodulin (TMOD) is the actin-capping protein for the slow-growing end of filamentous actin, and a neuronal-specific isoform, neuronal tropomodulin (NTMOD), is the major binding protein to brain tropomyosin in rat. The Drosophila TMOD homolog, Sanpodo, alters sibling cell fate determination, so we used a cross-species approach to identify additional TMOD family members that may play a critical role in this process. We characterized the human and mouse orthologs to rat NTMOD (TMOD2 and Tmod2, respectively) as well as two novel tropomodulin family members (TMOD3, Tmod3 and TMOD4, Tmod4). Their expression patterns vary extensively, from ubiquitous (TMOD3 and Tmod3) to muscle (TMOD4) or neuronal tissues only (TMOD2 and Tmod2). TMOD2 and TMOD3 map next to one another on chromosome 15q21.1-q21.2, and their mouse orthologs map to a homologous region on mouse chromosome 9; TMOD4 maps to the telomeric end of 1q12 and Tmod4 to a homologous region of mouse chromosome 3. Their location and expression patterns make TMOD2 and TMOD3 candidate genes for amyotrophic lateral sclerosis 5 (ALS5) and dyslexia-1 (DYX1) and TMOD4 a candidate gene for limb girdle muscular dystrophy 1B (LGMD1B). Our mapping efforts revealed new regions of paralogy among chromosomes 1q, 9q, 15q, and 19p.  相似文献   

11.
Paralogous genes from several families were found in four human chromosome regions (4p16, 5q33-35, 8p12-21, and 10q24-26), suggesting that their common ancestral region underwent several rounds of large- scale duplication. Searches in the EMBL databases, followed by phylogenetic analyses, showed that cognates (orthologs) of human duplicated genes can be found in other vertebrates, including bony fishes. In contrast, within each family, only one gene showing the same high degree of similarity with all the duplicated mammalian genes was found in nonvertebrates (echinoderms, insects, nematodes). This indicates that large-scale duplications occurred after the echinoderms/chordates split and before the bony vertebrate radiation. It has been suggested that two rounds of gene duplication occurred in the vertebrate lineage after the separation of Amphioxus and craniate (vertebrates + Myxini) ancestors. Before these duplications, the genes that have led to the families of paralogous genes in vertebrates must have been physically linked in the craniate ancestor. Linkage of some of these genes can be found in the Drosophila melanogaster and Caenorhabditis elegans genomes, suggesting that they were linked in the triploblast Metazoa ancestor.   相似文献   

12.
Myogenin is a member of a family of muscle-specific regulatory factors which includes MyoD1, Myf-5, and Myf-6 (also called MRF4 and herculin). Extensive regions of sequence homology in genes for these three factors suggest duplication events associated with their evolution. In the present study, the chromosomal location of the myogenin gene in humans (MYOG), mice (Myog), and Chinese hamsters (MYOG) was determined using in situ hybridization to human metaphase chromosomes as well as segregation analysis among interspecific somatic cell hybrid panels and interspecific backcrossed mice. We localize the gene encoding myogenin to human chromosome 1q31-q41 within a linkage group homologous with a region on mouse chromosome 1 and Chinese hamster chromosome 5. The results verify the nonlinkage of MYOG to MYOD1, MYF5, and MYF6 genes and indicate that events associated with the duplication of MYOG with respect to MYOD1, MYF5, or MYF6 loci were not chromosome-wide.  相似文献   

13.
The alpha block of the human and chimpanzee major histocompatibility complex (MHC) class I genomic region contains 10 to 11 duplicated MHC class I genes, including the HLA/Patr-A, -G, and -F genes. In comparison, the alpha block of the rhesus macaque (Macaca mulatta, Mamu) has an additional 20 MHC class I genes within this orthologous region. The present study describes the identification and analysis of the duplicated segmental genomic structures (duplicons) and genomic markers within the alpha block of the rhesus macaque and their use to reconstruct the duplication history of the genes within this region. A variety of MHC class I genes, pseudogenes, transposons, and retrotransposons, such as Alu and ERV16, were used to categorize the 28 duplicons into four distinct structural categories. The phylogenetic relationship of MHC class I genes, Alu, and LTR16B sequences within the duplicons was examined by use of the Neighbor-Joining (NJ) method. Two single-duplicon tandem duplications, two polyduplicon tandem duplications with an accompanying inversion product per duplication, eight polyduplicon tandem duplications steps, 12 deletions, and at least two recombinations were reconstructed to explain the highly complex organization and evolution of the 28 duplicons (nine inversions) within the Mamu alpha block. On the basis of the phylogenetic evidence and the reconstructed tandem duplication history of the 28 duplicons, the Mamu/Patr/HLA-F ortholog was the first MHC class I gene to have been fixed without further duplication within the alpha block of primates. Assuming that the rhesus macaque and the chimpanzee/human lineages had started with the same number of MHC class I duplicons at the time of their divergence approximately 24 to 31 MYA, then the number of genes within the alpha block have been duplicated at an approximately three times greater rate in the rhesus macaque than in either the human or chimpanzee.  相似文献   

14.
15.
Conserved linkage groups have been found on the X and autosomal chromosomes in several mammalian species. The identification of conserved chromosomal regions has potential for predicting gene location in mammals, particularly in humans. The genes for human aminoacylase-1 (ACY1, N-acylamino acid aminohydrolase, E.C.3.5.1.14), an enzyme in amino acid metabolism, and beta-galactosidase-A (GLB1, E.C.3.2.1.23), deficient in GM1-gangliosidosis, have been assigned to human chromosome 3. Using human-mouse somatic cell hybrids segregating translocations of human chromosome 3, expression of both ACY1 and GLB1 correlated with the presence of the p21 leads to q21 region of chromosome 3. In a previous study, assignment of these genes to mouse chromosome 9 used mouse-Chinese hamster somatic cell hybrids, eliminating mouse chromosomes. To approximate the size of the conserved region in the mouse, experiments were performed with recombinant inbred mouse strains. An electrophoretic variant of ACY-1 in mouse strains was used to map the Acy-1 gene 10.7 map U from the beta-galactosidase locus. These data suggest that there is a region of homology within the p21 leads to q21 region of human chromosome 3 and a segment of mouse chromosome 9. Since the mouse transferrin gene (Trf) is closely linked to the aminoacylase and beta-galactosidase loci, we predict that the human transferrin (TF) gene is on chromosome 3.  相似文献   

16.
Aromatic amino acid hydroxylase (AAAH) genes and insulin-like genes form part of an extensive paralogy region shared by human chromosomes 11 and 12, thought to have arisen by tetraploidy in early vertebrate evolution. Cloning of a complementary DNA (cDNA) for an amphioxus (Branchiostoma floridae) hydroxylase gene (AmphiPAH) allowed us to investigate the ancestry of the human chromosome 11/12 paralogy region. Molecular phylogenetic evidence reveals that AmphiPAH is orthologous to vertebrate phenylalanine (PAH) genes; the implication is that all three vertebrate AAAH genes arose early in metazoan evolution, predating vertebrates. In contrast, our phylogenetic analysis of amphioxus and vertebrate insulin-related gene sequences is consistent with duplication of these genes during early chordate ancestry. The conclusion is that two tightly linked gene families on human chromosomes 11 and 12 were not duplicated coincidentally. We rationalize this paradox by invoking gene loss in the AAAH gene family and conclude that paralogous genes shared by paralogous chromosomes need not have identical evolutionary histories.  相似文献   

17.
Gene duplication provides the opportunity for subsequent refinement of distinct functions of the duplicated copies. Either through changes in coding sequence or changes in regulatory regions, duplicate copies appear to obtain new or tissue-specific functions. If this divergence were driven by natural selection, we would expect duplicated copies to have differentiated patterns of substitutions. We tested this hypothesis using genes that duplicated before the human/mouse split and whose orthologous relations were clear. The null hypothesis is that the number of amino acid changes between humans and mice was distributed similarly across different paralogs. We used a method modified from Tang and Lewontin to detect heterogeneity in the amino acid substitution pattern between those different paralogs. Our results show that many of the paralogous gene pairs appear to be under differential selection in the human/mouse comparison. The properties that led to diversification appear to have arisen before the split of the human and mouse lineages. Further study of the diverged genes revealed insights regarding the patterns of amino acid substitution that resulted in differences in function and/or expression of these genes. This approach has utility in the study of newly identified members of gene families in genomewide data mining and for contrasting the merits of alternative hypotheses for the evolutionary divergence of function of duplicated genes.  相似文献   

18.
The chromosomal localization of the genes coding for the pro-protein and pro-hormone convertases PC1, PC2, and Furin has been achieved by in situ hybridization. The genes for PC1 and PC2 were located on human chromosomes 5q15-21 and 20p11.1-11.2, respectively. The gene for Furin was assigned to the mouse chromosome 7D1-7E2 region. These data complete the chromosomal localization of these three convertases in both human and mouse. The results confirm the regional correspondence of the human chromosomes 15 and mouse chromosomes 7, as well as between human chromosome 20 and mouse chromosome 2. Furthermore, the identification of the NEC1 locus on human chromosome 5 and mouse chromosome 13 suggests a conservation of synthenic regions between these regions of the human and mouse genomes.  相似文献   

19.
Npy1randNpy2r,the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31–q32. We have now assignedNpy1randNpy2rto conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity.  相似文献   

20.
The aims of the study were to outline the sequence of eventsthat gave rise to the vertebrate insulin-relaxin gene familyand the chromosomal regions in which they reside. We analyzedthe gene content surrounding the human insulin/relaxin geneswith respect to what family they belonged to and if the duplicationhistory of investigated families parallels the evolution ofthe insulin-relaxin family members. Markov Clustering and phylogeneticanalysis were used to determine family identity. More than 15%of the genes belonged to families that have paralogs in theregions, defining two sets of quadruplicate paralogy regions.Thereby, the localization of insulin/relaxin genes in humansis in accordance with those regions on human chromosomes 1,11, 12, 19q (insulin/insulin-like growth factors) and 1, 6p/15q,9/5, 19p (insulin-like factors/relaxins) were formed duringtwo genome duplications. We compared the human genome with thatof Ciona intestinalis, a species that split from the vertebratelineage before the two suggested genome duplications. Two insulin-likeorthologs were discovered in addition to the already describedCi-insulin gene. Conserved synteny between the Ciona regionshosting the insulin-like genes and the two sets of human paralogonsimplies their common origin. Linkage of the two human paralogons,as seen in human chromosome 1, as well as the two regions hostingthe Ciona insulin-like genes suggests that a segmental duplicationgave rise to the region prior to the genome doublings. Thus,preserved gene content provides support that genome duplication(s)in addition to segmental and single-gene duplications shapedthe genomes of extant vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号