首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
分子靶向抗肿瘤药物研究进展   总被引:1,自引:0,他引:1  
分子靶向抗肿瘤药物有独特的靶向抗肿瘤作用,在当前临床治疗中已发挥重要作用,并显示出良好的应用前景。根据其分子的大小可将分子靶向抗肿瘤药物分为大分子单克隆抗体类和小分子化合物类,我们简要综述了这2类分子靶向抗肿瘤药物的研究进展。  相似文献   

2.
格尔德霉素是以Hsp90为靶目标的安莎类抗生素,具有多种生物活性。其抗肿瘤活性使其成为目前肿瘤治疗领域的研究热点。综述了格尔德霉素生物合成及结构改良研究进展,并对其作为新型抗肿瘤药物的未来发展方向进行了讨论。  相似文献   

3.
青蒿素是从青蒿中提取出的具有抗疟活性的药物成分,青蒿素内含的过氧桥结构可以生成大量的如蒿甲醚、蒿乙醚、双氢青蒿素、青蒿琥酯等衍生物,目前已证实青蒿素及其衍生物还具有抗寄生虫、抗肿瘤、抗病毒、抗真菌等多重功效。介绍了青蒿素在临床应用的近期情况,并对其在抗肿瘤等其他领域的研究进展进行了简要的综述。这种价廉、低毒的药物在救治身患疟疾的濒危患者的同时,在抗肿瘤治疗等领域中也能发挥重大作用。  相似文献   

4.
海洋富含结构新颖的抗肿瘤活性物质,已成为全世界普遍关注的研究热点。国际已上市的海洋抗肿瘤药物有阿糖胞苷(Cytarabine)、曲贝替定(Ecteinascidin-743)、甲磺酸艾日布林(Eribulin mesylate)等,还有许多源自海洋生物的抗肿瘤候选药物正在进行临床前和临床研究。我国海洋抗肿瘤物质研究成果在国际上占有相当份额,但与产业化严重脱节。通过了解国内外海洋抗肿瘤药物的研究进展和产业方向,分析了我国海洋抗肿瘤药物产业化过程存在的药源开发不足、知识产权缺乏、资金投入不足、临床周期长等问题,提出了以市场需求,多学科相互交叉为基础,产学研合作模式为主体的自主知识产权药物研究体系,从关键技术、产品市场和产业政策等方面为加速我国海洋抗肿瘤药物的产业化提供有益思考。  相似文献   

5.
对喜树碱类抗肿瘤药物进行了简要的介绍,重点从植物细胞培养、毛状根培养和内生真菌培养几个方面,论述了体外培养产生喜树碱类天然药物的研究进展。  相似文献   

6.
目前临床上广泛用于急性白血病化疗的药物,常具有严重的毒副反应包括心肌毒性,其引起的充血性心力衰竭(congestive heart failure,CHF)已成为急性白血病患者化疗后的致死原因之一.因此在维持化疗药物治疗效果的同时,降低其心脏毒性,减少急性白血病化疗后心肌病是近年来的研究热点.关于这方面的研究进展主要包括监测技术的进展、高效低毒化疗药物的研究和应用进展以及心肌保护剂的进展.监测手段的研究进展使得对心肌损伤的监测更敏感、更便于操作.抗肿瘤药物衍生物的研究进展如去甲氧柔红霉素(idarubicin,IDA)、米托蒽醌(mitoxantrone,MTZ)及脂质体阿霉素(liposomal anthracyclines)等高效低毒药物在增强了其抗肿瘤活性的同时,明显降低了其心肌毒性,减少了心肌病的发生率.另外制定化疗方案前应充分评估患者高危因素,限制累积剂量的应用也明显降低了化疗药物的心肌毒性.心肌保护剂的应用也已成为防治急性白血病化疗后心肌病的有效手段,如右丙亚胺(Dexrazoxane,DEX)有明确的心肌保护作用,研究表明DEX的使用并不影响抗肿瘤药物原有的抗肿瘤活性,有广泛的临床应用价值.  相似文献   

7.
随着医学水平的不断进步,巩固治疗已广泛应用于造血系统肿瘤及各种实体瘤的临床治疗,治疗方案为巩固化疗/维持化疗、巩固放疗、免疫调节剂和中药巩固治疗。虽然巩固治疗在肿瘤治疗的应用中起到了积极地效果,但临床治疗中仍在探索抗肿瘤疗效确切、安全性高、毒副作用小、提高患者机体免疫功能且治疗费用经济的巩固治疗药物和方案,从而有效延长患者生存期。本文就这些药物的应用和研究进展进行综述。  相似文献   

8.
纳米粒子(nanoparticles, NPs)由于其独特的生物相容性、生物降解性和抗肿瘤特性,被广泛用作抗肿瘤纳米药物载体,以增强抗肿瘤药物的靶向作用。骨肉瘤是青少年最常见的恶性骨肿瘤,复发、转移是导致骨肉瘤患者死亡的最主要原因。如何有效地抑制骨肉瘤复发转移,同时促进骨缺损修复是当前骨肉瘤研究的重点。纳米粒子可通过多种途径影响骨肉瘤细胞生长,进而抑制骨肉瘤的发生和发展。我们简要总结近年来与骨肉瘤治疗密切相关的纳米粒子研究进展,以期为骨肉瘤的临床治疗提供参考。  相似文献   

9.
血管生成在肿瘤的发生发展过程中起着非常重要的作用。促血管生成因子及其受体可以通过调节血管生成促进肿瘤发生发展。因此,发现和开发靶向血管生成因子药物已经成为治疗肿瘤的重要策略。近年来,天然产物因其结构多样、毒副作用低及作用机制独特等优势已然成为开发抗肿瘤药物的主要来源。本文归纳阐述了近年来靶向血管生成因子具有抗肿瘤活性的天然产物研究进展,为进一步发现和开发靶向肿瘤血管生成的天然药物提供重要的理论依据。  相似文献   

10.
癌症已成为全球头号杀手,迫切需要从自然界寻找更新、更有效的抗肿瘤药物。植物内生真菌是指生活在宿主植物体内,不会对宿主植物组织引起明显病害症状的一类真菌。众多研究表明,植物内生真菌在寻找抗肿瘤药物中起着至关重要的作用。随着植物内生真菌研究的深入,从植物内生真菌中寻找新的抗肿瘤活性成分已成为研究的热点。大量的抗肿瘤活性成分从植物内生真菌中分离出来,并表现出良好的抗肿瘤活性。目前,植物内生真菌抗肿瘤活性代谢产物主要有紫杉醇、喜树碱、长春新碱,鬼臼毒素等等,本文主要对近年来植物内生真菌抗肿瘤活性成分的研究进展进行了综述。  相似文献   

11.
大型海藻龙须菜富含活性多糖、藻红蛋白、膳食纤维和营养元素等,具有调节免疫活性、抗肿瘤、抗氧化、抗病毒等多种生物活性、药用价值和保健功效,经常食用可预防肥胖、高胆固醇、高血脂、便秘等代谢疾病。近年来,随着龙须菜抗肿瘤活性成分的筛选与深入分析,越来越多的人开始关注龙须菜的抗肿瘤活性及其在肿瘤防治中的作用与机理。对龙须菜药用价值及其抗肿瘤活性的新进展进行总结有利于指导抗肿瘤新药的研制和开发,从而更好地预防和治疗肿瘤。  相似文献   

12.
A series of novel α-aminophosphonate derivatives containing DHA structure were designed and synthesized as antitumor agents. In vitro antitumor activities of these compounds against the NCI-H460 (human lung cancer cell), A549 (human lung adenocarcinoma cell), HepG2 (human liver cancer cell) and SKOV3 (human ovarian cancer cell) human cancer cell lines were evaluated and compared with commercial anticancer drug 5-fluorouracil (5-FU), employing standard MTT assay. The pharmacological screening results revealed that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most demonstrated more potent inhibitory activities compared with the commercial anticancer drug 5-FU. The action mechanism of representative compound 7c was preliminarily investigated by acridine orange/ethidium bromide staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining and flow cytometry, which indicated that the compound can induce cell apoptosis in NCI-H460 cells. Cell cycle analysis showed that compound 7c mainly arrested NCI-H460 cells in G1 stage.  相似文献   

13.
Over the past few decades, panels of human cancer cell lines have made a significant contribution to the discovery and development of anticancer drugs. The National Cancer Institute 60 (NCI60), which consists of 60 cell lines from various human cancer types, remains the most powerful human cancer cell line panel for high throughput screening of anticancer drugs. The development of JFCR39, comprising a panel of 39 human cancer cell lines coupled with a drug-activity database, was based on NCI60. Like NCI60, JFCR39 not only provides disease-oriented information but can also predict the action mechanism or molecular target of a given antitumor agent by utilizing the COMPARE algorithm. The molecular targets of ZSTK474 as well as several other antitumor agents have been identified by using JFCR39 and some of these compounds have since entered clinical trials. In this review, we will describe human cancer cell line panels particularly JFCR39 and its application in the discovery and/or development of anticancer drug candidates.  相似文献   

14.
Cancer is a complex issue and, even though the prevention basics and therapy have been implemented, it is still the second leading death cause worldwide. With the hope to discover new powerful and safer molecules to fight cancer, many researchers focused their attention on metal-based compounds, starting from the most famous and successfully employed anticancer drug, i.e. cisplatin. The current article aims to report the most recent discoveries about the use of gold, silver and copper complexes as antitumor agents, highlighting their influences on important enzymes, namely human topoisomerases. The latter are fundamental for the cell life and, if overexpressed, strongly implicated in cancer onset and progression. The identification of lead complexes targeting human topoisomerases and gifted with the appropriate chemical and pharmacological properties represents a fecund starting point to obtain new and more effective anticancer molecules.  相似文献   

15.
In this paper we report on three different hydrophilic copolymers based on alpha,beta-polyaspartylhydrazide (PAHy) bearing butyric groups in the side chain (C 4) (PAHy-C 4) or a combination of butyric groups and positive charged residues ((carboxypropyl)trimethylammonium chloride, CPTACl) (PAHy-C 4-CPTA) that were synthesized and used for the preparation of new supramolecular vesicular aggregates (SVAs) containing gemcitabine as an antitumor drug. Gemcitabine-loaded SVAs containing synthesized PAHy derivatives were characterized from the physicochemical and technological point of view and the in vitro toxicity and anticancer activity on two different human cancer cell lines, i.e., CaCo-2 (human colon carcinoma) and ARO (human anaplastic thyroid carcinoma) cells, were also evaluated. Moreover, considering that carrier-cell interaction is an important factor to achieve an improvement of anticancer drug activity, confocal laser scanning microscopy and flow cytometric experiments were carried out on the two different cancer cell lines.  相似文献   

16.
The relatively low success rate of cancer nanomedicines has raised debate on the roles of the enhanced permeability and retention (EPR) effect in enhancing drug delivery to tumors and improving therapeutic efficacy. In this review, we highlight new strategies beyond the EPR effect for enhancing nanoparticle delivery to tumors. We discuss the roles of transcellular extravasation, receptor-mediated pathways, and protein corona interactions on nanoparticle deposition in tumors. We summarize recent progress in platinum-based combination nanomedicines containing multiple chemotherapeutics with synergistic anticancer mechanisms and multiple anticancer therapies with novel mechanisms to enhance drug delivery and antitumor activities. We also highlight future opportunities in platinum-based combination nanomedicines and key hurdles for the translation of these combination nanomedicines into the clinic.  相似文献   

17.
Cancer is a major killer disease throughout human history. Thus, cancer becomes a major point of interest in life science. It was proved that cancer is a nitrogen trap and tumor cells are avid glutamine consumers. The non-essential amino acid glutamine, which is a glutamic acid derivative, supplies its amide nitrogen to tumor cells in the biosynthesis of purine and pyrimidine bases of nucleic acids as well as takes part in protein synthesis. Based on these and in continuation of our composite programme of development of new potential anticancer agents through rational drug design, 17 new 5-N-Substituted-2-(substituted benzenesulphonyl) glutamines were selected for synthesis. These compounds as well as 36 earlier synthesized glutamine analogues were screened for antitumor activity using percentage inhibition of tumor cell count as the activity parameter. QSAR study was performed with 53 compounds in order to design leads with increased effectiveness for antitumor activity using both physicochemical and topological parameters. QSAR study showed that steric effect on the aromatic ring is conducive to the activity. n-butyl substitution on aliphatic side chain and atom no 12 is important for antitumor activity of glutamine analogues.  相似文献   

18.
Multidrug resistance (MDR) is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs) in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and function of MDR pump-rich EVs in cancer cells and their ability to confer multiple anticancer drug resistance.  相似文献   

19.
Using literature data on anticancer activity of pyrazole derivatives, 3D-QSAR models were developed and 3D-QSAR analysis was performed. The 3D-QSAR analysis enabled identification of molecular properties that have the highest impact on antitumor activity against lung cancer cells. The results of 3D-QSAR analysis were taken into account while new compounds were designed. Obtained 3D-QSAR models were used for prediction of activity of new compounds. In this way, design of new compounds was guided by 3D-QSAR analysis which was performed on literature data. Ten new pyrazole derivatives were synthesised and their antitumor activities against A549 and NCIH23 lung cancer cells were validated. In order to obtain full profile of anticancer activity, cells viability (MTS) assays were combined with cell proliferation (BrdU) assays which measure actively dividing cells in treated sample. Experimental measurements showed good agreement between predicted and measured activities for majority of compounds. Also, anticancer activities of new pyrazole derivatives pointed to the chemical groups that can be useful in designing antitumor molecules. Substitution of hydrazine linker with rigid, 1,2,4-oxadiazole moiety resulted in compound 10, which has low (if any) cytotoxic activity and high potential cytostatic activity. Therefore, compound 10 presents a good starting point for design of new, more potent and safer anticancer therapeutics.  相似文献   

20.
Cancer remains a major health issue in the world and the effectiveness of current therapies is limited resulting in disease recurrence and resistance to therapy. Therefore to overcome disease recurrence and have improved treatment efficacy there is a continued effort to develop and test new anticancer drugs that are natural or synthetic - (conventional chemotherapeutics, small molecule inhibitors) and biologic (antibody, tumor suppressor genes, oligonucleotide) product. In parallel, efforts for identifying molecular targets and signaling pathways to which cancer cells are “addicted” are underway. By inhibiting critical signaling pathways that is crucial for cancer cell survival, it is expected that the cancer cells will undergo a withdrawal symptom akin to “de-addiction” resulting in cell death. Thus, the key for having an improved and greater control on tumor growth and metastasis is to develop a therapeutic that is able to kill tumor cells efficiently by modulating critical signaling pathways on which cancer cells rely for their survival.Currently several small molecule inhibitors targeted towards unique molecular signaling pathways have been developed and tested in the clinic. Few of these inhibitors have shown efficacy while others have failed. Thus, targeting a single molecule or pathway may be insufficient to completely block cancer cell proliferation and survival. It is therefore important to identify and test an anticancer drug that can inhibit multiple signaling pathways in a cancer cell, control growth of both primary and metastatic tumors and is safe.One biologic agent that has the characteristics of serving as a potent anticancer drug is interleukin (IL)-24. IL-24 suppresses multiple signaling pathways in a broad-spectrum of human cancer cells leading to tumor cell death, inhibition of tumor angiogenesis and metastasis. Additionally, combining IL-24 with other therapies demonstrated additive to synergistic antitumor activity. Clinical testing of IL-24 as a gene-based therapeutic for the treatment of solid tumors demonstrated that IL-24 is efficacious and is safe. The unique features of IL-24 support its further development as an anticancer drug for cancer treatment.In this review we summarize the current understanding on the molecular targets and signaling pathways regulated by IL-24 in mediating its anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号