首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
秦善  石洁  潘徐盈  曾宪明  张秋勤 《微生物学报》2023,63(12):4698-4713
【目的】生物胺是一类广泛存在发酵食品中潜在有害物质,可被胺氧化酶分解。本研究对来源于乳酸菌的胺氧化酶的酶学性质及其降生物胺能力进行了探究。【方法】本研究在大肠杆菌中异源表达了植物乳杆菌中多铜氧化酶基因SufI,经过优化表达条件与纯化重组酶后,分析了该酶的最适反应条件、酶稳定性、降生物胺能力、光谱与结构特性。【结果】重组酶的最适pH值为3.5,最适温度为20℃,在pH 4.0–10.0或15–65℃的条件下,相对酶活力保持在70%以上。重组酶具有较好的稳定性,酶活不受乙醇等抑制剂的影响。在8种生物胺的混合体系内,重组酶对生物胺总量的降解量可达403.23μg/mL,其中对酪胺的降解量最多,超过70μg/mL (34.99%)。在单一生物胺体系内,重组酶对酪的底物亲和性较高,酶活可达18.33U/mL。紫外-可见扫描光谱显示酶蛋白在600 nm处有多铜氧化酶家族特征吸收峰,傅里叶红外光谱解析酰胺Ⅰ带中α螺旋、β折叠、β转角和无规则卷曲的相对含量分别为21.52%、20.72%、33.80%和23.97%。同源建模预测该酶具有3个铜结合域,且含有组氨酸、半胱氨酸、甲硫氨酸和谷氨酸等铜配体结合...  相似文献   

2.
徐洁  方芳 《生物工程学报》2019,35(7):1286-1294
生物胺是一种存在于发酵食品中的含氮小分子有机化合物,过量摄入可能引起过敏或其他不良反应。利用酶法降解是减少发酵食品中生物胺含量从而保障食品安全的有效方法之一。文中成功克隆了来源于发酵乳杆菌的多铜氧化酶基因,在大肠杆菌中表达的酶活水平为484 U/L。通过镍柱亲和层析方法获得了此多铜氧化酶的纯酶。该多铜氧化酶的最适反应温度为50℃,最适反应pH为3.5,其K_m为1.3 mmol/L,V_(max)为7.67×10~(-2) mmol/(L·min)。对酶的应用特性研究表明,来源于发酵乳杆菌的多铜氧化酶对18%(W/F)NaCl有一定的耐受性,并可降解包括色胺、苯乙胺、腐胺、尸胺、组胺、酪胺和亚精胺在内的7种生物胺。其中它对组胺和酪胺的降解能力最高,分别为51.6%和40.9%。此外,该酶对酱油中的生物胺也有普遍降解作用,使用较低酶量(500 U/L)时,对酱油中总胺的降解率达到10.6%。多铜氧化酶具备降解发酵食品中生物胺的潜力,为进一步实现这类食品酶的实际应用奠定基础。  相似文献   

3.
倪秀梅  方芳 《生物工程学报》2021,37(12):4382-4394
多铜氧化酶 (Multicopper oxidase,MCO) 家族中的某些酶可以通过氧化反应降解食品中的胺类危害物生物胺。然而酶在催化时因为持续被氧化可能会影响整个反应过程中MCO的活性及稳定性,使酶的催化效率和降解生物胺的能力下降。文中成功在大肠杆菌Escherichia coli BL21(DE3) 中构建并表达了来源于发酵乳杆菌Lactobacillus fermentum的多铜氧化酶 (MCOF) 与枯草芽孢杆菌过氧化氢酶 (CAT) 的融合酶。8种融合酶对H2O2的耐受性提高了51%–68%,融合酶CAT&MCOF在降解组胺的过程中稳定性比MCOF提高了17.3%。以2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸(2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid),ABTS)为底物时,CAT&MCOF对底物的亲和力 (Km) 提高了1.0倍,催化效率 (kcat/Km) 提高了1.7倍,摩尔比酶活提高了1.2倍,且在酸性 (pH 2.5–4.5) 和中高温 (35–55 ℃) 条件下的稳定性都有不同程度的提高。此外,CAT&MCOF对腐胺、尸胺和组胺的降解率分别为31.7%、36.0%和57.8%,分别比MCOF提高了132.5%,45.7%和38.9%。多铜氧化酶与过氧化氢酶融合表达提高酶催化稳定性和催化效率的策略将为通过酶的分子改造提高其应用特性提供参考。  相似文献   

4.
单胺氧化酶   总被引:6,自引:0,他引:6  
单胺氧化酶(monoamine oxidase,MAO)是生物体内一种十分重要的酶,它在大脑和周围神经组织中催化一些生物体产生的胺,氧化脱氨产生过氧化氢(H2O2).单胺氧化酶A和B基因的克隆清楚地证明了这些酶是由不同的多肽组成的.单胺氧化酶A和B的基因定位于X染色体(Xp11.23),都由15个外显子组成,而且它们的内含子-外显子组织是完全一致的.这些事实表明单胺氧化酶A和B的基因很可能从同一个祖先进化而来.单胺氧化酶A和B具有不同的底物和抑制剂专一性,在生物神经递质代谢和行为方面具有不同的作用.  相似文献   

5.
孙楷  孙凡  朱亮 《生物磁学》2014,(6):1180-1182
单胺氧化酶(monoamine oxidase, MAO)是人体内天然存在的一种酶,催化单胺类物质氧化脱氨反应的酶。人体内含有两种单胺氧化酶:单胺氧化酶A 和单胺氧化酶B。单胺氧化酶A 主要分布在儿茶酚胺能神经元中;单胺氧化酶B 主要分布在5- 羟色胺能神经元、组胺能神经元和神经胶质细胞中,这两种亚型都均可以使单胺类神经递质失活。而单胺氧化酶抑制剂则能够通过抑制单胺氧化酶的对单胺类物质的氧化活性,从而达到减轻或者消除由各种原因引起的单胺类物质减少或单胺氧化酶活性过高导致的疾病。本文主要总结了近几年单胺氧化酶抑制剂在临床上用于治疗帕金森病、抑郁症和幽门螺旋杆菌方面的最新进展。  相似文献   

6.
单胺氧化酶(monoamine oxidase,MAO)是人体内天然存在的一种酶,催化单胺类物质氧化脱氨反应的酶。人体内含有两种单胺氧化酶:单胺氧化酶A和单胺氧化酶B。单胺氧化酶A主要分布在儿茶酚胺能神经元中;单胺氧化酶B主要分布在5-羟色胺能神经元、组胺能神经元和神经胶质细胞中,这两种亚型都均可以使单胺类神经递质失活。而单胺氧化酶抑制剂则能够通过抑制单胺氧化酶的对单胺类物质的氧化活性,从而达到减轻或者消除由各种原因引起的单胺类物质减少或单胺氧化酶活性过高导致的疾病。本文主要总结了近几年单胺氧化酶抑制剂在临床上用于治疗帕金森病、抑郁症和幽门螺旋杆菌方面的最新进展。  相似文献   

7.
苏国兴  刘友良 《植物学报》2005,22(4):408-418
本文简要地介绍了多胺的分解代谢途径、与分解代谢有关的酶(多胺氧化酶、二胺氧化酶、氨丙基转移酶、g-氨基丁酸转氨酶和琥珀酸半醛脱氢酶)及其主要产物(二氨基丙胺、g-氨基丁酸、稀有多胺和H2O2)在高等植物体内的生理作用。  相似文献   

8.
彩绒革盖菌CV—8漆酶和多酚氧化酶活性   总被引:2,自引:0,他引:2  
彩绒革盖菌(Corilusversicolor)是一种具有木质素降解能力的白腐菌,其降解木素的能力主要取决于木质素过氧化物酶、漆酶、多酚氧化酶和愈创木酚氧化酶的活力高低,所以研究其活力和分泌情况对木质素的生物降解、生物制浆和环境保护具有十分重要的意义。国外已有彩绒革盖菌漆酶的报道[1,2],但主要集中在漆酶对木质素作用后所造成的木质素结构上的变化,有关漆酶和多酚氧化酶的活性分析报道较少[3];国内有关的研究报道更少[4,5],至今未见彩绒革盖菌漆酶和多酚氧化酶的研究报道。本文主要测定了彩绒革盖菌…  相似文献   

9.
高等植物体内的多胺分解代谢及其主要产物的生理作用   总被引:6,自引:0,他引:6  
本文简要地介绍了多胺的分解代谢途径、与分解代谢有关的酶(多胺氧化酶、二胺氧化酶、氨丙基转移酶、γ-氨基丁酸转氨酶和琥珀酸半醛脱氢酶)及其主要产物(二氨基丙胺、γ-氨基丁酸、稀有多胺和H2O2)在高等植物体内的生理作用.  相似文献   

10.
豇豆初生叶多胺氧化酶的催化特性   总被引:1,自引:0,他引:1  
从豇豆幼苗 (6d苗龄 )初生叶提纯得到的多胺氧化酶 (EC 1 .4.3 .6 )属于二胺氧化酶 ,最有效的底物是 1 ,4 二胺丁烷 (腐胺 )、1 ,5 二胺戊烷 (尸胺 )、1 ,6 二胺己烷、1 ,1 0 二胺癸烷等α 二胺 ,其催化活性随二胺类底物碳链的增长而相应减弱。豇豆多胺氧化酶对亚精胺和精胺也具有较高的催化活性。另外 ,底物腐胺和尸胺的浓度超过 2mmol/L或亚精胺和精胺浓度超过 3mmol/L时会对酶活性有抑制效应。以腐胺和尸胺为底物时 ,酶的最适 pH约为7.0 ,而以亚精胺和精胺为底物时其最适pH为 6 .5。该酶的催化活性还随反应介质的离子强度增加而降低。K ,Ca2 和Mg2 (皆为 1 0mmol/L)对酶活性无明显抑制作用 ,而同样浓度的Mn2 ,Zn2 ,Fe2 ,Co2 和Cd2 则对酶活性有不同程度的抑制作用。金属螯合剂EDTA(1 0mmol/L)和腺苷蛋氨酸脱羧酶抑制剂甲基乙二醛 双脒腙 (0 .1mmol/L)可抑制酶活性约 80 % ,而铜结合剂KCN(1 .0mmol/L)、羰基试剂羟胺 (0 .1mmol/L)和氨基胍 (0 .1mmol/L)可导致该酶完全失活  相似文献   

11.
Cytokinin oxidase: Biochemical features and physiological significance   总被引:10,自引:0,他引:10  
The catabolism of cytokinin in plant tissues appears to be due, in large part, to the activity of a specific enzyme, cytokinin oxidase. This enzyme catalyses the oxidation of cytokinin substrates bearing unsaturated isoprenoid side chains, using molecular oxygen as the oxidant. In general, substrate specificity is highly conserved and cytokinin substrates bearing saturated or cyclic side chains do not serve as substrates for most cytokinin oxidases tested to date. Despite variation in molecular properties of the enzyme from a number of higher plants, oxygen is always required for the reaction. Cytokinin oxidases from several sources have been shown to be glycosylated. Cytokinin oxidase activity appears to be universally inhibited by cytokinin-active urea derivatives. Auxin has been reported to act as an allosteric regulator which increases activity of the enzyme.
Cytokinin oxidase activity is subject to tight regulation. Levels of the enzyme are controlled by a mechanism sensitive to cytokinin supply. The up-regulation of cytokinin oxidase expression in response to exogenous application of cytokinin suggests that the metabolic fate of exogenously applied cytokinins may not accurately mimic that of the endogenous compounds.
Cytokinin oxidase is believed to be a copper-containing amine oxidase (EC 1.4.3.6). Considerable evidence strongly supports a common mechanism for amine oxidases. It is possible that advances in understanding of other amine oxidases could be extrapolated to increase our understanding of cytokinin oxidase at the molecular level. This is discussed with reference to what is currently known about the catalytic mechanism of the enzyme. The possibility of pyrroloquinoline quinone, or a closely related compound, as a redox cofactor of cytokinin oxidase is considered, as are the implications of the glycosylated nature of the enzyme for its regulation and compartmentalisation within the cell.  相似文献   

12.
Abstract

The interaction of pea seedling amine oxidase with cytokinins was examined to probe a possible connection between cytokinin oxidase and amine oxidase by determining whether cytokinins are substrates or inhibitors of the latter. Kinetic measurements suggest that cytokinins are weak competitive inhibitors of amine oxidase while their behaviour as substrates was not observed. The absence of enzymatic activity with cytokinins as substrates denies the identity or even any similarity of these two enzymes which was previously considered [Hare, P.D. and van Staden, J. (1994) J. Physiol. Plant., 91, 128]. From the values of the inhibition constants obtained it seems unlikely that cytokinins take part in the regulation of amine oxidase activity in vivo. Their inhibitory effect on amine oxidase may be similar to that of some alkaloids studied earlier.  相似文献   

13.
Copper/TPQ amine oxidases from mammalian and plant sources have shown many differences in substrate specificity and molecular properties. In this work the activity of lentil seedling amine oxidase was followed at various temperatures in 100 mM potassium phosphate buffer, pH 7, using benzylamine as substrate. The discontinuous Arrhenius plot of lentil amine oxidase showed two distinct phases with a jump between them. Thermal denaturation of the enzyme, using differential scanning calorimetry under the same experimental conditions, showed a transition at the same temperature ranges in the absence of substrate, indicating the occurrence of conformational changes, with an enthalpy change of about 175.9 kJ/mole. The temperature-induced changes of the activity of lentil amine oxidase are compared with those of bovine serum amine oxidase (taken from the literature).  相似文献   

14.
The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.  相似文献   

15.
Ethanolamine oxidase was screened with the aim of using it to establish a novel enzymatic phosphatidylethanolamine assay. Ethanolamine oxidase activity was detected in the crude extract of Arthrobacter sp., and the enzyme was purified more than 15-fold in three steps with a 54% yield. SDS–PAGE revealed the presence of only one band, which migrated, with an apparent molecular mass of 70 kDa. Biochemical characterization of the enzyme showed phenylethylamine to be the preferred substrate, with the highest kcat/Km value. The primary structure, determined by sequencing the cloned gene, showed a high degree of identity to Cu-containing phenylethylamine oxidase (64%). When heterologously overexpressed in Escherichia coli, the enzyme exhibited only a trace of amine oxidase activity, but high levels of activity emerged after exposure to Cu2+, as is typical of recombinant copper amine oxidases. Preliminary application of this enzyme coupled with phospholipase D for determination of phosphatidylethanolamine is also described. This is the first enzymatic method for the measurement of phosphatidylethanolamine.  相似文献   

16.
Lysyl oxidases (Lox), which are members of the amine oxidase family, are involved in the maturation of elastic lamellae and collagen fibers. Modifications of amine oxidases in idiopathic annulo-aortic ectasia disease (IAAED) have never been investigated. Our aim was to examine the expression of several proteins that might interfere with elastic fiber organization in control (n=10) and IAAED (n=18) aortic tissues obtained at surgery. Expression of amine oxidases and semicarbazide-sensitive amine oxidase (SSAO), and cellular phenotypic markers were examined by immunohistopathology and confocal microscopy. The expression of these proteins was assessed in relation to clinical and histomorphological features of the arterial wall. In control aorta, SSAO staining was expressed along elastic lamellae, whereas in aneurysmal areas of IAAED, SSAO was markedly decreased, in association with severe disorganization of elastic lamellae. Smooth muscle myosin heavy chain was also decreased in IAAED compared with controls, indicating smooth muscle cell dedifferentiation. Multiple regression analysis showed that elastic lamellar thickness (ELT) was correlated positively with the SSAO:elastin ratio and negatively with the Lox:elastin ratio, and that the clinical features of IAAED (aneurysm, thoracic aorta diameter, and aortic insufficiency) were positively correlated with ELT but not with SSAO. The relationship between SSAO expression and ELT suggests that this amine oxidase may be involved in elastic fiber organization. However, in advanced IAAED, the deficit in SSAO expression could be secondary to the decrease and fragmentation of elastic fibers and/or to vascular smooth muscle cell dedifferentiation.  相似文献   

17.
Abstract

Kinetic properties of novel amine oxidases isolated from a mold Aspergillus niger AKU 3302 were compared to those of typical plant amine oxidase from pea seedling (EC 1.4.3.6). Pea amine oxidase showed highest affinity with diamines, such as putrescine and cadaverine, while fungal enzymes oxidized preferably n-hexylamine and tyramine. All enzymes were inhibited by carbonyl reagents, copper chelating agents, some substrate analogs and alkaloids, but there were quite significant differences in the sensitivity and inhibition modes. Aminoguanidine, which strongly inhibited pea amine oxidases showed only little effect on fungal enzymes. Substrate analogs such as 1,5-diamino-3-pentanone and l-amino-3-phenyl-3-propanone, which were potent competitive inhibitors of pea amine oxidases, inhibited fungal enzymes much more weakly and non competitively. Also various alkaloids behaving as competitive inhibitors of pea amine oxidases inhibited the fungal enzymes non competitively. Very surprising was the potent inhibition of fungal enzymes by artificial substrates of pea amine oxidases, E- and Z-1,4-diamino-2-butene. The relationships between the different inhibition modes and possible binding at the active site are discussed.  相似文献   

18.
Enzymatic reversal of the Maillard reaction is a growing area of research. Fructosyl amine oxidase enzymes (EC 1.5.3) have attracted recent attention through demonstration of their ability to deglycate Amadori products, low molecular weight intermediates formed during the early stage of the Maillard reaction. Although stopped assays have been described, a bottleneck in current studies is the lack of continuous kinetic assays. Here, we describe the development of a continuous, coupled enzyme assay and its successful application to determining optimal storage conditions and the steady-state kinetic parameters of an enzyme from this group, amadoriase I. A K(m)(app) of 11 microM and a K(cat)(app) of 3.5s(-1) were determined using this assay using fructosyl propylamine as a substrate, which differ from previous reports. This method was also used to test the activity of two site-directed mutants of amadoriase I, H357N and S370A, which were found to be catalytically inactive.  相似文献   

19.
Copper containing amine oxidases (Cu-AO) represent a heterogeneous class of enzymes classified as EC 1.4.3.6. The present study reports preliminary results on the presence of a novel amine oxidase activity in rat liver mitochondria lysates. Such enzymatic activity was found in the soluble mitochondrial fraction, obtained by simple osmotic shock. The mitochondrial amine oxidase was isolated by affinity chromatography on a newly synthesised spermine-Sepharose. SDS-PAGE showed a single band at about 60 kDa. Upon chromatographic purification, the enzymatic activity was very labile. The crude enzyme activity was tested by spectrophotometric measurements, determining hydrogen peroxide production following oxidative deamination of different substrates, such as polyamines (spermine, spermidine, putrescine and cadaverine) and monoamines (dopamine and benzylamine). The activity, observed on polyamines and not on monoamines, was inhibited by semicarbazide and azide, but not by pargyline, clorgyline and l-deprenil. Enzyme specificity was tested on several diamines characterized by different carbon atom chain length in the range 2-6 carbon atoms. The highest activity was found with 1,2-diamino-ethane and the highest affinity with 1,5-diamino-pentane. The above reported results suggest the presence of a novel copper-dependent amine oxidase in liver mitochondria matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号