首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic and biochemical studies have shown that cdc2 protein kinase plays a pivotal role in a highly conserved mechanism controlling the entry of cells into mitosis. It is generally believed that one function of cdc2 kinase is to phosphorylate histone H1 which in turn promotes mitotic chromosome condensation. However, direct evidence linking H1 phosphorylation to mitotic chromatin condensation is limited and the exact cellular function(s) of H1 phosphorylation remains unclear. In this study, we show that mammalian cdc2 kinase phosphorylates H1 from the amitotic macronucleus of Tetrahymena with remarkable fidelity. Furthermore, we demonstrate that macronuclei from Tetrahymena contain a growth-associated H1 kinase activity which closely resembles cdc2 kinase from other eukaryotes. Using polyclonal antibodies raised against yeast p34cdc2, we have detected a 36 kd immunoactive polypeptide in macronuclei which binds to Suc1 (p13)-coated beads and closely follows H1 kinase activity. Since macronuclei divide without mitotic chromosome condensation, these data demonstrate that H1 phosphorylation by cdc2 kinase may be necessary, but is not sufficient to promote mitotic chromatin condensation. The fact that an activity which strongly resembles mammalian cdc2 kinase is active during cell growth in a nucleus which does not undergo mitosis and chromosome condensation suggests that other factors are needed for a true mitotic division to occur. These data also reinforce the notion that H1 phosphorylation has important functions outside mitosis both in Tetrahymena and in mammalian cells.  相似文献   

2.
When BHK21 cells synchronized in early S phase were exposed to okadaic acid (OA), an inhibitor of protein phosphatases 1 and 2A, mitosis specific events such as premature chromosome condensation, the production of MPM-2 antigens, dispersion of nuclear lamins and the appearance of mitotic asters were induced, and then disappeared upon further incubation. These mitosis specific events occurred even in the presence of cycloheximide. Within 1 h of exposure to OA, cdc2/histone H1 kinase activity rose 10-fold compared with untreated controls, but returned to the control level upon further incubation. Using antibodies against either p34cdc2 or cyclin B it was found that p34cdc2 complexed with cyclin B was dephosphorylated after OA treatment concomitant with the activation of cdc2 kinase, and that cyclin B was subsequently degraded concomitant with a decrease in cdc2 kinase activity, as in normal mitosis. In contrast, when cells in G1 phase were treated with OA no increase in cdc2 kinase activity was observed. Moreover when cells in pseudo-metaphase induced by nocodazole were treated with OA, cdc2 kinase was inactivated. These results suggest that OA sensitive protein phosphatases control both the activation and inactivation of the p34cdc2 kinase.  相似文献   

3.
Mouse embryos of the ddY strain fertilized in vitro undergo the first cleavage to the 2-cell stage but not the second cleavage even 45 hr after insemination (2-cell block). We examined the phosphorylation state of p34cdc2 and histone H1 kinase activity in mouse 2-cell embryos to investigate the relationship of p34cdc2 with 2-cell block. In the first mitotic cell cycle, the amount of phosphorylated forms of p34cdc2, which were detected as the bands of retarded mobility on SDS-PAGE followed by immunoblotting with anti-p34cdc2 antibody, increased during interphase and abruptly decreased at M phase. Concomitant with this dephosphorylation, histone H1 kinase activity was increased. After the embryos cleaved to the 2-cell stage, the amounts of phosphorylated forms of p34cdc2 increased up to 33 hr after insemination. However, the activation of histone H1 kinase did not occur and the states of phosphorylation of p34cdc2 did not show any significant changes until 45 hr. In contrast, 2-cell embryos of B6C3F1 mice, which do not show a 2-cell block and develop normally to blastocysts in vitro, exhibit the dephosphorylation of p34cdc2 and an increase in histone H1 kinase activity between 31 and 45 hr after insemination. When the ddY mouse embryos arrested at the 2-cell stage were treated with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, the dephosphorylation of p34cdc2 occurred and histone H1 kinase activity increased. The chromosomes of these embryos stained with 4',6'-diamidino-2-phenylindole revealed the initiation of condensation. These results suggest that 2-cell-blocked embryos contain enough p34cdc2 to induce mitotic events but the protein remains in a latent form.  相似文献   

4.
Proper chromosome condensation requires the phosphorylation of histone and nonhistone chromatin proteins. We have used an in vitro chromosome assembly system based on Xenopus egg cytoplasmic extracts to study mitotic histone H3 phosphorylation. We identified a histone H3 Ser(10) kinase activity associated with isolated mitotic chromosomes. The histone H3 kinase was not affected by inhibitors of cyclin-dependent kinases, DNA-dependent protein kinase, p90(rsk), or cAMP-dependent protein kinase. The activity could be selectively eluted from mitotic chromosomes and immunoprecipitated by specific anti-X aurora-B/AIRK2 antibodies. This activity was regulated by phosphorylation. Treatment of X aurora-B immunoprecipitates with recombinant protein phosphatase 1 (PP1) inhibited kinase activity. The presence of PP1 on chromatin suggested that PP1 might directly regulate the X aurora-B associated kinase activity. Indeed, incubation of isolated interphase chromatin with the PP1-specific inhibitor I2 and ATP generated an H3 kinase activity that was also specifically immunoprecipitated by anti-X aurora-B antibodies. Nonetheless, we found that stimulation of histone H3 phosphorylation in interphase cytosol does not drive chromosome condensation or targeting of 13 S condensin to chromatin. In summary, the chromosome-associated mitotic histone H3 Ser(10) kinase is associated with X aurora-B and is inhibited directly in interphase chromatin by PP1.  相似文献   

5.
De Souza CP  Osmani AH  Wu LP  Spotts JL  Osmani SA 《Cell》2000,102(3):293-302
Phosphorylation of histone H3 serine 10 correlates with chromosome condensation and is required for normal chromosome segregation in Tetrahymena. This phosphorylation is dependent upon activation of the NIMA kinase in Aspergillus nidulans. NIMA expression also induces Ser-10 phosphorylation inappropriately in S phase-arrested cells and in the absence of NIMX(cdc2) activity. At mitosis, NIMA becomes enriched on chromatin and subsequently localizes to the mitotic spindle and spindle pole bodies. The chromatin-like localization of NIMA early in mitosis is tightly correlated with histone H3 phosphorylation. Finally, NIMA can phosphorylate histone H3 Ser-10 in vitro, suggesting that NIMA is a mitotic histone H3 kinase, perhaps helping to explain how NIMA promotes chromatin condensation in A. nidulans and when expressed in other eukaryotes.  相似文献   

6.
Mammalian growth-associated H1 histone kinase, an enzyme whose activity is sharply elevated at mitosis, is similar to cdc2+ protein kinase from Schizosaccharomyces pombe and CDC28 protein kinase from Saccharomyces cerevisiae with respect to immunoreactivity, molecular size, and specificity for phosphorylation sites in H1 histone. Phosphorylation of specific growth-associated sites in H1 histone is catalyzed by yeast cdc2+/CDC28 kinase, as shown by the in vitro thermal lability of this activity in extracts prepared from temperature-sensitive mutants. In addition, highly purified Xenopus maturation-promoting factor catalyzes phosphorylation of the same sites in H1 as do the mammalian and yeast kinases. The data indicate that growth-associated H1 kinase is encoded by a mammalian homolog of cdc2+/CDC28 protein kinase, which controls entry into mitosis in yeast and frog cells. Since H1 histone is known to be an in vivo substrate of the mammalian kinase, this suggests that phosphorylation of H1 histone or an H1 histone counterpart is an important component of the mechanism for entry of cells into mitosis.  相似文献   

7.
8.
In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation.  相似文献   

9.
The NH2-terminal domain (N-tail) of histone H3 has been implicated in chromatin compaction and its phosphorylation at Ser10 is tightly correlated with mitotic chromosome condensation. We have developed one mAb that specifically recognizes histone H3 N-tails phosphorylated at Ser10 (H3P Ab) and another that recognizes phosphorylated and unphosphorylated H3 N-tails equally well (H3 Ab). Immunocytochemistry with the H3P Ab shows that Ser10 phosphorylation begins in early prophase, peaks before metaphase, and decreases during anaphase and telophase. Unexpectedly, the H3 Ab shows stronger immunofluorescence in mitosis than interphase, indicating that the H3 N-tail is more accessible in condensed mitotic chromatin than in decondensed interphase chromatin. In vivo ultraviolet laser cross-linking indicates that the H3 N-tail is bound to DNA in interphase cells and that binding is reduced in mitotic cells. Treatment of mitotic cells with the protein kinase inhibitor staurosporine causes histone H3 dephosphorylation and chromosome decondensation. It also decreases the accessibility of the H3 N-tail to H3 Ab and increases the binding of the N-tail to DNA. These results indicate that a phosphorylation-dependent weakening of the association between the H3 N-tail and DNA plays a role in mitotic chromosome condensation.  相似文献   

10.
M A Flix  P Cohen    E Karsenti 《The EMBO journal》1990,9(3):675-683
In Xenopus embryos, the cell cycle is abbreviated to a rapid alternation between interphase and mitosis. The onset of each M phase is induced by the periodic activation of the cdc2 kinase which is triggered by a threshold level of cyclins and apparently involves dephosphorylation of p34cdc2. We have prepared post-ribosomal supernatants from eggs sampled during interphase (interphase extracts) and just before the first mitosis of the early embryonic cell cycle (prophase extracts). In 'interphase extracts', the cdc2 kinase never activates spontaneously upon incubation at room temperature whereas in 'prophase extracts' it does. We show here that in 'interphase extracts', specific inhibition of type 2A phosphatase by okadaic acid induces cdc2 kinase activation. This requires a subthreshold level of cyclin and the presence of a particulate factor in the extract. Inhibition of type 1 phosphatases by inhibitor 1 and inhibitor 2 never results in cdc2 kinase activation. These results demonstrate that during the period of cyclin accumulation, cdc2 kinase activation is inhibited by a type 2A phosphatase. In 'prophase extracts', spontaneous activation of the cdc2 kinase is inhibited by beta-glycerophosphate and NaF, but not by okadaic acid, inhibitor 1 and inhibitor 2 or divalent cation chelation. This demonstrates that when enough cyclin has accumulated, cdc2 kinase activation involves a protein phosphatase which must be distinct from the type 1 and 2A phosphatases, and from the calcium-dependent (type 2B) and magnesium-dependent (type 2C) phosphatases.  相似文献   

11.
Regulation of the cdc25 protein during the cell cycle in Xenopus extracts.   总被引:48,自引:0,他引:48  
A Kumagai  W G Dunphy 《Cell》1992,70(1):139-151
The cdc25 protein is a highly specific tyrosine phosphatase that triggers mitosis by dephosphorylating the cdc2 protein kinase. Using Xenopus extracts, we have found that the cdc25 protein is active at a low level throughout interphase. Near the onset of mitosis, the cdc25 protein undergoes a marked elevation in phosphatase activity that coincides with an extensive phosphorylation of the protein in its N-terminal region. In vitro dephosphorylation of this hyperphosphorylated form of cdc25 reduces its phosphatase activity back to the interphase level. Moreover, treatment of interphase Xenopus extracts with okadaic acid, a phosphatase inhibitor that accelerates the entry into mitosis, elicits both the premature hyperphosphorylation of cdc25 and the stimulation of its cdc2-specific tyrosine phosphatase activity. These experiments demonstrate the existence of a cdc25 regulatory system consisting of both a stimulatory kinase that phosphorylates a putative regulatory domain of the cdc25 protein and an inhibitory serine/threonine phosphatase that counteracts this kinase activity.  相似文献   

12.
Calyculin A is known to inhibit the type-1 and type-2A phosphatases. We previously reported that calyculin A induces contractile ring formation in unfertilized sea urchin eggs, an increase in histone H(1) kinase activity, and chromosome condensation in the calyculin A-treated unfertilized eggs, and the changes induced by calyculin A are not affected by emetine, an inhibitor of protein synthesis. These observations suggest that the mechanism by which histone H(1) kinases are activated by calyculin A is different from that of maturation-promoting factor (MPF), which is activated by a molecular modification of existed cdc2 and newly synthesized cyclin B. We report here that no cyclin B was detected by immunoblotting of unfertilized calyculin A-treated eggs. In addition, no DNA synthesis was induced by calyculin A. As well, butyrolactone I (an inhibitor of cdc2 and cdk2 kinase) had no effect on the increase in histone H(1) kinase activity nor the chromosome condensation, both of which were induced by calyculin A. Thus, we conclude that calyculin A induces histone H(1) phosphorylation in an MPF-independent manner through inhibition of type-1 phosphatase, and that the chromosome condenses as a result of histone H(1) phosphorylation.  相似文献   

13.
The relationship between histone phosphorylation and chromosome condensation was investigated by determining changes in phosphorylation levels of histones H1 and H3 following fusion between mitotic and interphase cells and subsequent premature chromosome condensation. We detected significant increases in the levels of phosphorylation of H1 and H3 from interphase chromatin in which a majority of nuclei had undergone premature chromosome condensation. In addition, we noted significant decreases in the phosphate content of the highly phosphorylated mitotic H1 and H3, presumably resulting from phosphatase activity contributed by the interphase component of mitotic/interphase fused cells. These observations further strengthen the correlation between histone phosphorylation and the changes in chromosome condensation associated with the initiation of mitosis. This study also suggests that maintenance of the mitotic chromosomes in a highly condensed state does not require the continued presence of histones in a highly phosphorylated form.  相似文献   

14.
Initiation of mitosis in Aspergillus nidulans requires activation of two protein kinases, p34cdc2/cyclin B and NIMA. Forced expression of NIMA, even when p34cdc2 was inactivated, promoted chromatin condensation. NIMA may therefore directly cause mitotic chromosome condensation. However, the mitosis-promoting function of NIMA is normally under control of p34cdc2/cyclin B as the active G2 form of NIMA is hyperphosphorylated and further activated by p34cdc2/cyclin B when cells initiate mitosis. To see the p34cdc2/cyclin B dependent activation of NIMA, okadaic acid had to be added to isolation buffers to prevent dephosphorylation of NIMA during isolation. Hyperphosphorylated NIMA contained the MPM-2 epitope and, in vitro, phosphorylation of NIMA by p34cdc2/cyclin B generated the MPM-2 epitope, suggesting that NIMA is phosphorylated directly by p34cdc2/cyclin B during mitotic initiation. These two kinases, which are both essential for mitotic initiation, are therefore independently activated as protein kinases during G2. Then, to initiate mitosis, we suggest that each activates the other's mitosis-promoting functions. This ensures that cells coordinately activate p34cdc2/cyclin B and NIMA to initiate mitosis only upon completion of all interphase events. Finally, we show that NIMA is regulated through the cell cycle like cyclin B, as it accumulates during G2 and is degraded only when cells traverse mitosis.  相似文献   

15.
W Krek  E A Nigg 《The EMBO journal》1991,10(11):3331-3341
In vertebrates, entry into mitosis is accompanied by dephosphorylation of p34cdc2 kinase on threonine 14 (Thr14) and tyrosine 15 (Tyr15). To examine the role of these residues in controlling p34cdc2 kinase activation, and hence the onset of mitosis, we replaced Thr14 and/or Tyr15 by non-phosphorylatable residues and transfected wild-type and mutant chicken p34cdc2 cDNAs into HeLa cells. While expression of wild-type p34cdc2 did not interfere with normal cell cycle progression, p34cdc2 carrying mutations at both Thr14 and Tyr15 displayed increased histone H1 kinase activity and rapidly induced premature mitotic events, including chromosome condensation and lamina disassembly. No phenotype was observed in response to mutation of only Thr14, and although single-site mutation at Tyr15 did induce premature mitotic events, effects were partial and their onset was delayed. These results identify both Thr14 and Tyr15 as sites of negative regulation of vertebrate p34cdc2 kinase, and they suggest that dephosphorylation of p34cdc2 represents the rate-limiting step controlling entry of vertebrate cells into mitosis.  相似文献   

16.
《The Journal of cell biology》1990,111(5):1753-1762
We have examined the effects of topoisomerase inhibitors on the phosphorylation of histones in chromatin during the G2 and the M phases of the cell cycle. Throughout the G2 phase of BHK cells, addition of the topoisomerase II inhibitor VM-26 prevented histone H1 phosphorylation, accompanied by the inhibition of intracellular histone H1 kinase activity. However, VM-26 had no inhibitory effect on the activity of the kinase in vitro, suggesting an indirect influence on histone H1 kinase activity. Entry into mitosis was also prevented, as monitored by the absence of nuclear lamina depolymerization, chromosome condensation, and histone H3 phosphorylation. In contrast, the topoisomerase I inhibitor, camptothecin, inhibited histone H1 phosphorylation and entry into mitosis only when applied at early G2. In cells that were arrested in mitosis, VM-26 induced dephosphorylation of histones H1 and H3, DNA breaks, and partial chromosome decondensation. These changes in chromatin parameters probably reverse the process of chromosome condensation, unfolding condensed regions to permit the repair of strand breaks in the DNA that were induced by VM- 26. The involvement of growth-associated histone H1 kinase in these processes raises the possibility that the cell detects breaks in the DNA through their effects on the state of DNA supercoiling in constrained domains or loops. It would appear that histone H1 kinase and topoisomerase II work coordinately in both chromosome condensation and decondensation, and that this process participates in the VM-26- induced G2 arrest of the cell.  相似文献   

17.
During interphase, histone amino-terminal tails play important roles in regulating the extent of DNA compaction. Post-translational modifications of the histone tails are intimately associated with regulating chromatin structure: phosphorylation of histone H3 is associated with proper chromosome condensation and dynamics during mitosis, while multiple H2B, H3, and H4 tail acetylations destabilize the chromatin fiber and are sufficient to decondense chromatin fibers in vitro. In this study, we investigate the spatio-temporal dynamics of specific histone H3 phosphorylations and acetylations to better understand the interplay of these post-translational modifications throughout the cell cycle. Using a panel of antibodies that individually, or in combination, recognize phosphorylated serines 10 and 28 and acetylated lysines 9 and 14, we define a series of changes associated with histone H3 that occur as cells progress through the cell cycle. Our results establish that mitosis appears to be a period of the cell cycle when many modifications are highly dynamic. Furthermore, they suggest that the upstream histone acetyltransferases/deacetylases and kinase/phosphatases are temporally regulated to alter their function globally during specific cell cycle time points.  相似文献   

18.
When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.  相似文献   

19.
Apoptosis is morphologically related to premature mitosis, an aberrant form of mitosis. Staurosporine, a potent protein kinase inhibitor, induces not only apoptotic cell death in a wide variety of mammalian cells but also premature initiation of mitosis in hamster cells that are arrested in S phase by DNA synthesis inhibitors. Here we report on the biochemical differences between the two phenomena commonly caused by staurosporine. Rat 3Y1 fibroblasts that had been arrested in S phase with hydroxyurea underwent apoptosis by treatment with staurosporine, whereas S-phase-arrested CHO cells initiated mitosis prematurely when similarly treated with a low concentration of staurosporine. Chromosome condensation occurred in both apoptosis (3Y1) and premature mitosis (CHO). However, neither formation of mitotic spindles nor mitosis-specific phosphorylation of MPM-2 antigens was observed in apoptosis of 3Y1 cells, unlike premature mitosis of CHO cells. The p34cdc2kinase activated in normal and prematurely mitotic cells remained inactive in the apoptotic cells, probably because the active cyclin B/p34cdc2complex was almost absent in the S-phase-arrested 3Y1 cells. The absence of intracellular activation of p34cdc2in apoptosis was confirmed by immunohistochemical analyses using a specific antibody raised against Ser55-phosphorylated vimentin which is specifically phosphorylated by p34cdc2during M phase. Furthermore, phosphorylation of histones H1 and H3, which is associated with mitotic chromosome condensation, did not occur in the apoptotic cells. These results indicate that the two phenomena, staurosporine-induced apoptosis and premature mitosis, are different in their requirement for p34cdc2kinase activation and histone phosphorylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号