首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
盐地碱蓬(Suaeda salsa)APX 基因的克隆及盐胁迫下的表达   总被引:13,自引:0,他引:13  
从盐地碱蓬 (Suaedasalsa)中克隆了抗坏血酸过氧化物酶 (ascorbateperoxidase ,APX)的全长cDNA(SsAPX) ,基因注册号为AY0 34 893。SsAPX全长 1.1kb ,推导的氨基酸序列长为 2 5 0个氨基酸残基。BLAST同源性分析表明 ,该cDNA与已报告的菠菜(Spinaciaoleracea)细胞质抗坏血酸过氧化物酶基因同源性最高 ,在核苷酸水平上一致性为 87% ,在氨基酸水平上一致性为 89%。Southern杂交表明APX基因在盐地碱蓬基因组中只有 1个拷贝。盐 (NaCl 40 0mmol/L)处理不同时间后的Northern杂交分析表明盐地碱蓬中SsAPX基因在盐胁迫下表达量增加 ,而且在盐胁迫下抗坏血酸过氧化物酶的活性也显著地增加 ,说明该基因受盐诱导。推测抗坏血酸过氧化物酶可能在保护盐地碱蓬免受氧化损伤的过程中起到一定作用  相似文献   

2.
盐地碱蓬GST基因的克隆、序列分析及其表达特征   总被引:16,自引:2,他引:14  
从盐地碱蓬 (Suaedasalsa)幼苗的cDNA文库中克隆到一个 0 .9kb的全长cDNA ,同源性分析表明该全长cDNA与已报告的大豆 (Glycinemax)GST基因相应序列的同源性达 5 5 % ,可能编码由 2 35个氨基酸组成的谷胱甘肽转移酶 (glutathioneS transferase ,GST)。Southern杂交结果证明GST基因在碱蓬基因组中可能有至少两个以上的拷贝 ;Northern杂交结果表明 ,4 0 0mmol/L的NaCl处理 4 8h ,幼叶中GSTmRNA的表达量是对照的 2~ 3倍 ,说明碱蓬中GST基因受盐诱导  相似文献   

3.
硫腺苷甲硫氨酸作为甲基供体在转甲基反应中起到重要作用.为了解硫腺苷甲硫氨酸在盐地碱蓬(Suaedasalsa (L.)Pall)耐盐中的作用,我们对可能编码硫腺苷甲硫氨酸合成酶的基因(SsSAMS2)进行了分析.该基因在经400 mmol/L NaCl处理的盐地碱蓬地上部分的λ-Zap cDNA文库中克隆到,其插入片段全长1 531 bp,包含一个395个氨基酸的开放阅读框架,该基因推断的分子量约为43 kD.SsSAMS2与长春花(Catharanthus roseus)的SAMS2在氨基酸水平上的一致性为93%.Southern杂交显示,SsSAMS2在盐地碱蓬基因组中可能是两个拷贝.Northern分析显示硫腺苷甲硫氨酸合成酶基因受NaCl等胁迫的正调控.酶活性检测表明,NaCl胁迫条件下该酶活性增强.  相似文献   

4.
硫腺苷甲硫氨酸作为甲基供体在转甲基反应中起到重要作用。为了解硫腺苷甲硫氨酸在盐地碱蓬(Suaeda salsa (L.) Pall)耐盐中的作用,我们对可能编码硫腺苷甲硫氨酸合成酶的基因(SsSAMS2)进行了分析.该基因在经400mmol/L NaCl处理的盐地碱蓬地上部分的λ-Zap cDNA文库中克隆到,其播入片段全长1531bp,包含一个395个氨基酸的开放阅读框架,该基因推断的分子量约为43kD.SsSAMS2与长春花(Catharanthus roseus)的SAMS2在氨基酸水平上的一致性为93%.Southern杂交显示,SsSAMS2在盐地碱蓬基因组中可能是两个拷贝.Northern分析显示硫腺苷甲硫氨酸合成酶基因受NaCl等胁迫的正调控.酶活性检测表明,NaCl胁迫条件下该酶活性增强.  相似文献   

5.
过氧化氢酶是清除H2O2的重要酶类.从400 mmol/L NaCl处理的盐地碱蓬(Suaeda salsa(L.)Pall)地上部分的cDNA文库中克隆了两个编码过氧化氢酶的cDNA(Sscat1和Sscat2),其中Sscat1(1.7kb)是一个全长cDNA克隆,编码一个492个氨基酸的开放阅读框架,而Sscat2(1.1kb)是一个cDNA片段.据编码Sscat1 3'端的287个氨基酸的cDNA序列与Sscat2的cDNA序列进行的BLAST同源性分析表明,Sscat1和Sscat2在核苷酸水平的一致性为71.9%,在氨基酸水平上的一致性为75%.Southem杂交表明,Sscat1在盐地碱蓬基因组中为多拷贝基因,Sscat2则为一个单拷贝基因.Northern杂交结果表明在盐胁迫条件下Sscat1和Sscat2的表达存在差异:400 mmol/L NaCl处理48h的盐地碱蓬根中的Sscat1和Sscat2 mRNA水平比对照显著提高,但是在叶中仅Sscatl受盐诱导表达.不同盐处理时间下的表达分析也证实,在盐地碱蓬叶中仅Sscat1受盐诱导表达.这说明Sscat1和Sscat2在盐地碱蓬中是差异调控的.生理分析表明过氧化氢酶的活性在盐胁迫条件下显著提高.  相似文献   

6.
利用EST随机挑取克隆测序的方法从盐地碱蓬叶片cDNA文库中分离得到了盐地碱蓬V-H -ATPase H亚基cDNA序列,并进行了H、c亚基基因表达及V-H -ATPase活性分析.结果表明,H亚基基因全长1 969 bp,包括100 bp的5′-非编码区和471 bp的3′-非编码区.开放阅读框为1 398 bp,编码465个氨基酸残基,分子量约52.8 kD.N orthern杂交分析表明盐胁迫明显诱导了H亚基表达,而且盐胁迫下H、c亚基及V-H -ATPase活性存在协同作用.这些结果表明盐胁迫下H和c亚基基因上调及V-H -ATPase活性的增加为N a 区隔化到液泡中提供了质子驱动力.  相似文献   

7.
过氧化氢酶是清除H2O2的重要酶类,从400mmol/LNaCl处理的盐地碱蓬(Suaeda salsa(L.)Pall)地上部分的cDNA文库中克隆了两个编码过氧化氢酶的cDNA(Sscat1和Sscat2)。其中Sscatl(1.7kb)是一个全长cDNA克隆,编码一个492个氨基酸的开放阅读框架。而Sscat2(1.1kb)是一个cDNA片段。据编码Sscatl3′端的287个氨基酸的cDNA序列与Sscat2的cDNA序列进行的BLAST同源性分析表明,Sscat1和Sscat2在核苷酸水平的一致性则为一个单拷贝基因。Northern杂交结果表明在盐胁迫条件下Sscat1和Sscat2的表达存在差异;400mmol/LNaCl处理48h的盐地碱蓬根中的Sscat1和Sscat2mRNA水平比对照显著提高,但是在叶中仅Sscat1受盐诱导表达,不同盐处理时间下的表达分析也证实。在盐地碱蓬叶中仅Sscat1受盐诱导表达。这说明Sscat1和Sscat2在盐地碱蓬中是差异调控的,生理分析表明过氧化氢酶的活性在盐胁迫条件下显著提高。  相似文献   

8.
羊草OEE1基因的克隆及盐胁迫下的表达   总被引:2,自引:0,他引:2  
从羊草(Leymus chinensis )叶片cDNA文库中克隆得到可能编码33 kD的光系统Ⅱ(PSⅡ)外周蛋白(oxygen-evolving enhancer protein1,OEE1)全长cDNA(GenBank登录号为EF583851),命名为LcOEE1.序列分析结果表明,该cDNA全长1 107 bp,5′非编码区为32 bp,3′非编码区为71 bp,编码区长987 bp,编码328个氨基酸.BALSTp比对发现,该基因氨基酸序列与已报道的小麦和水稻中的OEE1序列具有95%和94%的相似性.聚类分析表明,该基因与小麦和水稻的亲缘关系较近,与拟南芥和菠菜OEE1基因的亲缘关系较远.Northern杂交结果表明,在200 mmol/L的NaCl处理7 d的幼叶中,OEE1 mRNA的表达量明显高于未处理的对照,说明羊草中OEEl基因受盐诱导.  相似文献   

9.
根据NaHCO3胁迫下西伯利亚蓼茎部消减库中甘油醛-3-磷酸脱氢酶基因(GAPDH)表达序列标签序列设计引物,采用cDNA末端快速扩增技术,从西伯利亚蓼茎中扩增出GAPDH的全长cDNA序列。该cDNA序列全长1331bp,完整阅读框1014bp,编码337个氨基酸。属于稳定蛋白,具有GAPDH保守功能域。氨基酸组成与其他已知高等植物来自细胞质中的GAPDH基因cDNA序列具有很高的同源性,最高可以达到96%。通过转酿酒酵母INVSC1的NaHCO3和NaCl胁迫试验表明,转基因INVSC1(pYES2-GAPDH)有明显的抗盐胁迫特性。在10%NaHCO3和4mol·L-1 NaCl胁迫下,转基因INVSC1(pYES2-GAPDH)菌株存活率明显比INVSC1(pYES2)高,可以推测GAPDH基因赋予INVSC1(pYES2-GAPDH)抗NaHCO3和NaCl的能力。该基因的cDNA序列在GenBank中登录号为DQ922680。  相似文献   

10.
植物液泡膜H -ATPase在建立跨液泡膜质子梯度、促进液泡Na 区域化、提高植物耐盐性方面发挥着重要作用.本实验从盐生植物盐地碱蓬(Suaeda salsa L.)cDNA文库分离到碱蓬叶片液泡膜H -ATPase B亚基cDNA克隆.测序表明该基因长达1 974 bp,开放阅读框有1 470 bp编码489个氨基酸,含有一个保守的ATP结合位点,其蛋白分子量约为54.29 kD.Northem及Western印迹表明盐地碱蓬液泡膜H -ATPase B亚基表达明显受NaCl胁迫诱导,并且在NaCl胁迫下,B亚基在转录及翻译水平上与液泡膜H -ATPase c亚基存在协同作用.盐胁迫下,盐地碱蓬液泡H -ATPase B亚基与c亚基的协同表达增加了液泡H -ATPase的数量,从而提高了液泡H -ATPase活性,为碱蓬叶片液泡Na 区域化提供了动力,最终提高了碱蓬植株的耐盐性.  相似文献   

11.
以G2豌豆幼苗为材料,构建了滴度为6.5×106pfu的cDNA文库,用同源序列筛选法从该文库中得到一个全长465bp的cDNA。杂交分析认为它是一完整的cDNA序列。DNA序列分析表明,它拥有一个282bp的开放读码框,编码94个氨基酸。计算机同源序列比较发现,它可能编码豌豆核糖体小亚基蛋白S21(RS21-PEA),因为该序列与已知的玉米、水稻S21在氨基酸全序列水平上有32%~35%的同源性,并含有与RNA结合的特征结构域。进化树分析显示S21蛋白可在一定程度上反映生物的进化及遗传变异趋势。  相似文献   

12.
Two different cDNA clones (Sscat1 and Sscat2) encoding catalase, the primary important H2O2_scavenging enzyme, were isolated from a λZap_cDNA library constructed from a 400 mmol/L NaCl_treated library of Suaeda salsa (L.) Pall aerial tissue. Sscat1 (1.7 kb) contains a full open reading frame of 492 amino acids and Sscat2 (1.1 kb) is a partial clone. BLAST analysis indicates that the two clones share 71.9% identity in nucleotide sequence and 75% identity in deduced amino acid sequence within the last 287 amino acid residues of Sscat1. Southern blotting analysis showed that Sscat1 is multicopy in S. salsa genome, while Sscat2 is a single copy gene. Northern blotting analysis showed a rapid increase in the steady_level of both genes in roots after 48 h salt treatment, but only Sscat1 was induced in salinity treated leaves. Time_course analysis carried out in leaves confirmed that Sscat1 was induced by salt stress, in contrast to Sscat2. These implied that the expression of Sscat1 and Sscat2 genes are differentially regulated in S. salsa. The activity of total catalase is dramatically increased in response to salt stress.  相似文献   

13.
目的 克隆孢子丝菌未知过氧化氢酶基因,命名为Sscat基因.方法 根据生物信息库中7种已知真菌过氧化氢酶氨基酸序列的高度保守区域设计简并引物,PCR扩增获得部分Sscat基因cDNA片段,随后应用RACE技术分别扩增其3’端和5’端未知序列.结果 Sscat基因cDNA序列全长1746 bp,其中包括5’端121 b...  相似文献   

14.
15.
16.
17.
One of the most remarkable biochemical differences between the members of two domains Archaea and Bacteria is the stereochemistry of the glycerophosphate backbone of phospholipids, which are exclusively opposite. The enzyme responsible to the formation of Archaea-specific glycerophosphate was found to be NAD(P)-linked sn-glycerol-1-phosphate (G-1-P) dehydrogenase and it was first purified from Methanobacterium thermoautotrophicum cells and its gene was cloned. This structure gene named egsA (enantiomeric glycerophosphate synthase) consisted of 1,041 bp and coded the enzyme with 347 amino acid residues. The amino acid sequence deduced from the base sequence of the cloned gene (egsA) did not share any sequence similarity except for NAD-binding region with that of NAD(P)-linked sn-glycerol-3-phosphate (G-3-P) dehydrogenase of Escherichia coli which catalyzes the formation of G-3-P backbone of bacterial phospholipids, while the deduced protein sequence of the enzyme revealed some similarity with bacterial glycerol dehydrogenases. Because G-1-P dehydrogenase and G-3-P dehydrogenase would originate from different ancestor enzymes and it would be almost impossible to interchange stereospecificity of the enzymes, it seems likely that the stereostructure of membrane phospholipids of a cell must be maintained from the time of birth of the first cell. We propose here the hypothesis that Archaea and Bacteria were differentiated by the occurrence of cells enclosed by membranes of phospholipids with G-1-P and G-3-P as a backbone, respectively. Received: 24 March 1997 / Accepted: 21 May 1997  相似文献   

18.
19.
The most commonly occurring sialic acid Neu5Ac (N-acetylneuraminic acid) and its deaminated form, KDN (2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid), participate in many biological functions. The human Neu5Ac-9-P (Neu5Ac 9-phosphate) synthase has the unique ability to catalyse the synthesis of not only Neu5Ac-9-P but also KDN-9-P (KDN 9-phosphate). Both reactions are catalysed by the mechanism of aldol condensation of PEP (phosphoenolpyruvate) with sugar substrates, ManNAc-6-P (N-acetylmannosamine 6-phosphate) or Man-6-P (mannose 6-phosphate). Mouse and putative rat Neu5Ac-9-P synthases, however, do not show KDN-9-P synthase activity, despite sharing high sequence identity (>95%) with the human enzyme. Here, we demonstrate that a single mutation, M42T, in human Neu5Ac-9-P synthase can abolish the KDN-9-P synthase activity completely without compromising the Neu5Ac-9-P synthase activity. Saturation mutagenesis of Met42 of the human Neu5Ac-9-P synthase showed that the substitution with all amino acids except leucine retains only the Neu5Ac-9-P synthase activity at levels comparable with the wild-type enzyme. The M42L mutant, like the wild-type enzyme, showed the additional KDN-9-P synthase activity. In the homology model of human Neu5Ac-9-P synthase, Met42 is located 22 A (1 A=0.1 nm) away from the substrate-binding site and the impact of this distant residue on the enzyme functions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号