首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
稻瘟菌无毒基因研究进展   总被引:4,自引:0,他引:4  
Zhang Z  Jiang H  Wang YL  Sun GC 《遗传》2011,33(6):591-600
稻瘟菌是引起水稻稻瘟病的病原物。水稻与稻瘟菌间存在广泛而特异的相互作用,是研究寄主与病原物互作的重要模式系统。本文对稻瘟菌与水稻互作最重要的激发子―无毒基因的研究现状进行了概括,讨论了无毒基因的定位、克隆方法以及已克隆无毒基因的功能及进化研究,同时对今后无毒基因研究的重要方向进行了探讨,为深入理解无毒基因的功能及与水稻可能的互作关系奠定了基础。  相似文献   

2.
稻瘟病是世界上影响水稻(Oryza sativa)粮食生产的主要病害之一, 抗病基因的发掘与利用是抗病育种的基础和核心。随着寄主水稻和病原菌稻瘟病菌(Magnaporthe oryzae)基因组测序和基因注释的完成, 水稻和稻瘟病菌的互作体系成为研究植物与真菌互作的模式系统。该文对稻瘟病抗病基因的遗传、定位、克隆及育种利用进行概述, 并通过生物信息学分析方法, 探讨了水稻全基因组中NBS-LRR类抗病基因在水稻12条染色体上的分布情况, 同时对稻瘟病菌无毒基因的鉴定及无毒蛋白与抗病蛋白的互作进行初步分析。最后对稻瘟病抗病基因研究存在的问题进行分析并展望了未来的研究方向, 以期为水稻抗稻瘟病育种发展和抗病机制的深入理解提供参考。  相似文献   

3.
黄俊丽  王贵学 《遗传》2005,27(3):492-498
由稻瘟病菌引起的稻瘟病是水稻生产上危害最为严重的真菌病害,对世界粮食生产造成巨大损失。稻瘟病菌成功侵染寄主包括分生孢子萌发、附着胞形成、侵染钉分化和侵染性菌丝扩展等一系列错综复杂的过程,其中每一环节都是由特定基因控制的。稻瘟病菌与水稻的互作符合经典的基因对基因学说,二者的不亲和互作是无毒基因与抗病基因相互作用的结果。近几十年来,世界各国的科学家对稻瘟病菌致病性的生物学及其遗传的分子机制进行了深入的研究。文章就稻瘟病菌致病性的分子遗传学及其遗传变异机制的研究进行了综述,同时对功能基因的研究方法进行了总结。  相似文献   

4.
稻瘟病菌AVR-pita等位基因的遗传多样性研究(简报)   总被引:1,自引:0,他引:1  
由真菌Magnaporthe grisea引起的稻瘟病是我国水稻三大病害之一.也是遍及世界各水稻产区的重要病害.每年均有不同程度的发生.流行年份一般减产10%-20%.严重的达40%-50%.局部田块甚至颗粒无收。稻瘟病菌在进化过程中形成了遗传多样性和毒性易变的特性.是水稻品种抗病性容易丧失的主要原因之一。对稻瘟病系统研究的证据表明.水稻与稻瘟病菌之间的互作.符合“基因对基因”假说。也就是说.水稻有一抗病基因,稻瘟病菌中就会有相对应的无毒基因.  相似文献   

5.
稻瘟菌无毒基因研究进展   总被引:7,自引:1,他引:6  
无毒基因编码的产物激发病原物与植物特异性相互作用。水稻与稻瘟菌之间的特异互作符合“基因对基因”关系。从研究稻瘟菌无毒基因的意义、已鉴定和克隆的稻瘟菌无毒基因、稻瘟菌无毒基因与其抗病基因的互作特点等几个方面,对稻瘟菌无毒基因研究进展作了简要评述 。  相似文献   

6.
【目的】鉴定湖南省桃江病圃稻瘟病菌无毒基因型,为合理搭配种植湖南省水稻抗瘟品种和抗病育种提供依据。【方法】在湖南桃江病圃采集水稻品种"丽江新团黑谷"(LTH)稻瘟菌病样,用单孢分离法分离稻瘟病菌单孢并纯化获得单孢菌株,用针刺离体法将菌株接种到以"LTH"为轮回亲本培育而成的24个含单抗瘟基因的水稻5叶期第5叶片上,对供试菌株进行无毒基因鉴定,并应用联合致病性系数和联合抗病性系数分析抗瘟基因组合间的互作。【结果】供试92个稻瘟病单孢菌株含有全部的24个无毒基因,对24个已知含单抗瘟基因的水稻材料表现出不同程度的毒力水平,含水稻抗瘟基因Pi-20对供试菌株抗菌频率最高,达54.35%;通过联合致病性系数和联合抗病性系数分析抗瘟基因组合间的互作,结果表明最佳搭配组合为Pi-20×Pi-k~s(RAC=0.28,PAC=0.23)。【结论】湖南省桃江病圃稻瘟病菌致病力较强,24个抗瘟基因多已感病化,含抗性基因Pi-20与Pi-k、Pi-k~s、Pi-3组合的水稻品种目前可在湖南省推广利用,但需研究引进新的抗瘟基因。  相似文献   

7.
稻瘟病菌致病相关基因研究进展*   总被引:3,自引:0,他引:3  
稻瘟病是水稻的毁灭性病害,世界各地水稻产区都有此病发生。稻瘟病菌(Magnaporthe grisea)具有许多病原菌生命循环的重要特点:(1)分化形成称为附着胞的特异的侵染结构.(2)在这个过程中需要粘胶、疏水蛋白、黑色素、甘油等物质的合成与参与。(3)附着胞具有穿透寄主表皮的功能。(4)具有特异的信号传导途径,调节附着胞、侵染栓等侵染结构的形态分化(morphogenesis)。(5)在M. grisea和其寄主之间存在基因对基因关系,涉及到主要的真菌无毒基因和植物抗性基因。因此,稻瘟病菌致病的分子生物学及其与水稻寄主的互作研究是寻找新的…  相似文献   

8.
稻瘟病分子生物学研究进展   总被引:18,自引:0,他引:18  
稻瘟病分子生物学发展迅速,已分子标记定位的稻瘟病主效抗性基因15个,微效抗性基因3个;水稻抗稻瘟病基因Pi-ta和Pi-b已成功克隆。稻瘟病菌系谱与致病型关系可分为简单与复杂两种类型。本文对水稻抗稻瘟病基因的定位和克隆,稻瘟病菌群体遗传结构,致病性遗传、基因组分析、无毒基因克隆、准性生殖等研究进展进行了评述。  相似文献   

9.
水稻抗稻瘟病基因的标记辅助选择及定位克隆   总被引:8,自引:0,他引:8  
王忠华 《生命科学》2005,17(2):183-188
水稻抗稻瘟病基因-稻瘟病菌无毒基因相互作用体系是当今植物分子病理学和抗病育种学研究领域的模式体系之一,其中抗病基因的分子定位与克隆及其标记辅助选择已成为该体系的重要内容。本文就这方面的研究进展作一简要综述,以期为水稻抗病育种提供有益的信息。  相似文献   

10.
水稻抗稻瘟病天然免疫机制及抗病育种新策略   总被引:3,自引:0,他引:3  
何峰  张浩  刘金灵  王志龙  王国梁 《遗传》2014,36(8):756-765
稻瘟病是水稻最严重的病害之一,由子囊菌(Magnaporthe oryzae)引起。利用抗病品种是防治稻瘟病最经济、最有效的措施。近年来,稻瘟病已发展为研究植物与病原真菌分子互作机制的模式系统,在水稻与稻瘟菌互作和寄主抗性分子生物学、基因组学和蛋白组学等领域取得了一系列重要的研究成果。文章综述了近年来水稻抗稻瘟病两种天然免疫机制,即病原菌相关分子模式诱导和效应蛋白诱导的抗病机制研究的最新进展,讨论了GWAS、TALLEN、CRISPR和HIGS等基因组研究新方法和新技术在水稻抗病育种中的应用,并对目前稻瘟病抗性机制研究和抗病育种中的问题和挑战进行了探讨和展望。  相似文献   

11.
The interaction between rice, Oryza sativa, and rice blast fungus, Magnaporthe oryzae, is triggered by an interaction between the protein products of the host resistant gene, and the pathogen avirulence gene. This interaction follows the ‘gene-for-gene' concept. The resistant gene has effectively protected rice plants from rice blast infection. However, the resistant genes usually break down several years after the release of the resistant rice varieties because the fungus has evolved to new races. The objective of this study is to investigate the nucleotide sequence variation of the AVR-Pita1 gene that influences the adaption of rice blast fungus to overcome the resistant gene, Pi-ta. Thirty rice blast fungus isolates were collected in 2005 and 2010 from infected rice plants in northern and northeastern Thailand. The nucleotide sequences of AVR-Pita1 were amplified and analyzed. Phylogenetic analysis was conducted using the MEGA 5.0 program. The results showed a high level of nucleotide sequence polymorphisms and the positive genetic selection pressure in Thai rice blast isolates. The details of sequence variation analysis were described in this article. The information from this study can be used for rice blast resistant breeding program in the future.  相似文献   

12.
Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation.  相似文献   

13.
Compatible and incompatible reactions in rice plants (Oryza sativa L. cv. Shenxianggen No.4) were resulted from inoculation with two different virulent races of rice blast fungus (Magnaporthe grisea (Hebert) Barr), and thus an effective infecting system was established between rice plants and the rice blast pathogen. Two cDNA clones that showed induced and temporal patterns in expression in the very early stage in response to infection of the fungus were obtained from the plants by use of differential display. Of the two cDNA clones, Fastresp-a was induced to express in both compatible and incompatible interactions although it was expressed earlier in the former reaction. The second one, Fastresp-b, was only expressed in incompatible interaction. Southern blot analysis of the rice genomic DNA indicated that both of the two clones were from genome of the plant. No significant homology to the two genes was found from the rice gene database. This suggested that they were novel genes in rice and may play important roles in rice resistant response to infection of rice blast fungus.  相似文献   

14.
以亲和性与非亲和性两个稻瘟病原真菌小种(Magnaporthe grisea(Hebert)Barr)感染同一水稻品种(Oryzasativa L.cv.Shenxianggeng No.4)的植株产生明显不同的致病和抗病反应,由此建立了有效的感染系统。应用差异显示技术获得两个在侵染早期具有诱导表达特征的cDNA克隆,其中一个同时在致病和抗病反应中进行早期诱导表达,但在抗病反应中的诱导相对早于其在  相似文献   

15.
The avirulence characteristic of Magnaporthe grisea isolate TH16 corresponding to Jao Hom Nin (JHN) rice cultivar was studied by mapping population of 140 random ascospore progenies derived from the cross between B1-2 and TH16 isolates. Segregation analyses of the avirulence characteristic performing on JHN rice at the seedling and flowering stages were performed in this mapping population. We used the reference map of Guy11/2539 to choose microsatellite DNA markers for mapping the avirulence gene. The genetic map of this population was constructed from 39-microsatellite markers. The genetic map was spanned by covering seven chromosomes with an average distance of 11.9 cM per marker. In mapping population the distribution of pathogenic and non-pathogenic progenies on JHN rice were found to be fitted to 1 : 1 ratio for two of the rice stages, seedling and flowering stages. The Quantitative Trait Loci (QTL) analysis for avirulence genes corresponding to two rice stages were located at the same region on chromosome 2 between markers Pyms305 and Pyms435. The LOD score and percentage of phenotypic variance explained (PVE) on two rice stages were 5.01/16.69 and 6.73/20.26, respectively. These loci were designated as Avr-JHN(lb) and Avr-JHN(pb) corresponding to leaf and panicle blast characteristics. The findings of this study can be the initial step for positional cloning and identifying any function of avirulence genes corresponding to leaf and panicle blast characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号