首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Modulation of circulating leptin levels by its soluble receptor   总被引:20,自引:0,他引:20  
Leptin is an adipocyte-derived hormone with potent weight reducing effects. Genetically obese rodents with mutations of leptin or the leptin receptor are defective in leptin signaling and develop morbid obesity and diabetes. Interestingly, the levels of both leptin mRNA and protein are increased by up to 20-fold in these animals, suggesting the existence of a feedback mechanism controlling the amount of leptin in circulation. In this report, we attempted to determine whether the up-regulation of circulating leptin in Zucker Diabetic Fatty rats, which are nonresponsive to leptin due to a receptor point mutation, is entirely due to increased expression of leptin. We demonstrate that the high level of circulating leptin in these rats is attributable to at least two factors: increased leptin expression by the adipose tissue and delayed clearance of leptin from circulation due to binding to its soluble receptor. The latter conclusion was supported by three lines of evidence: 1) The soluble leptin receptor is up-regulated by about 20-fold in Zucker Diabetic Fatty rats; 2) Adenovirus-mediated overexpression of the soluble leptin receptor results in a similar -fold increase of circulating leptin; 3) In ob/ob mice, which have no endogenous leptin, exogenously administered leptin reaches a higher level when the soluble leptin receptor is overexpressed. The weight-reducing effect of leptin is enhanced in C57Bl/6 ob/ob mice with overexpression of the soluble leptin receptor. Soluble leptin receptor may be a significant factor determining the amount of total leptin in circulation.  相似文献   

2.
Leptin resistance is a common feature of obesity and the metabolic syndrome. However, the regulated expression of the leptin receptor (Ob-R) has not been studied in detail. Expression profiling of liver mRNA in leptin-treated wild-type mice revealed a marked increase in leptin receptor mRNA levels, which had not previously been described. This was confirmed by isoform-specific real-time PCR, which showed a >25-fold increase in the mRNAs encoding the short forms (Ob-Ra, Ob-Rc) and a >10-fold increase in the mRNA encoding the long (Ob-Rb) form of the leptin receptor in liver. In parallel, we also observed induction of plasma-soluble leptin receptor (SLR) protein by leptin administration, pair feeding, and short term food restriction. However, induction of SLR by leptin is abolished in mice with selective deletion of Ob-R from liver using Cre-LoxP technology. These data suggest that the liver is a major source of Ob-R mRNA expression under conditions of negative energy balance. Membrane-bound Ob-R is then shed into the circulation as SLR. Our study thus reveals an unexpected role of the liver in modulating total circulating leptin levels and possibly its biological activity.  相似文献   

3.
Insulin resistance plays a central role in the development of the metabolic syndrome, but how it relates to cardiovascular disease remains controversial. Liver insulin receptor knockout (LIRKO) mice have pure hepatic insulin resistance. On a standard chow diet, LIRKO mice have a proatherogenic lipoprotein profile with reduced high-density lipoprotein (HDL) cholesterol and very low-density lipoprotein (VLDL) particles that are markedly enriched in cholesterol. This is due to increased secretion and decreased clearance of apolipoprotein B-containing lipoproteins, coupled with decreased triglyceride secretion secondary to increased expression of Pgc-1 beta (Ppargc-1b), which promotes VLDL secretion, but decreased expression of Srebp-1c (Srebf1), Srebp-2 (Srebf2), and their targets, the lipogenic enzymes and the LDL receptor. Within 12 weeks on an atherogenic diet, LIRKO mice show marked hypercholesterolemia, and 100% of LIRKO mice, but 0% of controls, develop severe atherosclerosis. Thus, insulin resistance at the level of the liver is sufficient to produce the dyslipidemia and increased risk of atherosclerosis associated with the metabolic syndrome.  相似文献   

4.
The liver plays a central role in the control of glucose homeostasis and is subject to complex regulation by substrates, insulin, and other hormones. To investigate the effect of the loss of direct insulin action in liver, we have used the Cre-loxP system to inactivate the insulin receptor gene in hepatocytes. Liver-specific insulin receptor knockout (LIRKO) mice exhibit dramatic insulin resistance, severe glucose intolerance, and a failure of insulin to suppress hepatic glucose production and to regulate hepatic gene expression. These alterations are paralleled by marked hyperinsulinemia due to a combination of increased insulin secretion and decreased insulin clearance. With aging, the LIRKO liver exhibits morphological and functional changes, and the metabolic phenotype becomes less severe. Thus, insulin signaling in liver is critical in regulating glucose homeostasis and maintaining normal hepatic function.  相似文献   

5.
6.
Adipose tissue performs complex metabolic and endocrine functions. This review will focus on the recent literature on the biology and actions of three adipocyte hormones involved in the control of energy homeostasis and insulin action, leptin, acylation-stimulating protein, and adiponectin, and mechanisms regulating their production. Results from studies of individuals with absolute leptin deficiency (or receptor defects), and more recently partial leptin deficiency, reveal leptin's critical role in the normal regulation of appetite and body adiposity in humans. The primary biological role of leptin appears to be adaptation to low energy intake rather than a brake on overconsumption and obesity. Leptin production is mainly regulated by insulin-induced changes of adipocyte metabolism. Consumption of fat and fructose, which do not initiate insulin secretion, results in lower circulating leptin levels, a consequence which may lead to overeating and weight gain in individuals or populations consuming diets high in energy derived from these macronutrients. Acylation-stimulating protein acts as a paracrine signal to increase the efficiency of triacylglycerol synthesis in adipocytes, an action that results in more rapid postprandial lipid clearance. Genetic knockout of acylation-stimulating protein leads to reduced body fat, obesity resistance and improved insulin sensitivity in mice. The primary regulator of acylation-stimulating protein production appears to be circulating dietary lipid packaged as chylomicrons. Adiponectin increases insulin sensitivity, perhaps by increasing tissue fat oxidation resulting in reduced circulating fatty acid levels and reduced intramyocellular or liver triglyceride content. Adiponectin and leptin together normalize insulin action in severely insulin-resistant animals that have very low levels of adiponectin and leptin due to lipoatrophy. Leptin also improves insulin resistance and reduces hyperlipidemia in lipoatrophic humans. Adiponectin production is stimulated by agonists of peroxisome proliferator-activated receptor-gamma; an action may contribute to the insulin-sensitizing effects of this class of compounds. The production of all three hormones is influenced by nutritional status. These adipocyte hormones, the pathways controlling their production, and their receptors represent promising targets for managing obesity, hyperlipidemia, and insulin resistance.  相似文献   

7.
Irs2-mediated insulin/IGF1 signaling in the CNS modulates energy balance and glucose homeostasis; however, the site for Irs2 function is unknown. The hormone leptin mediates energy balance by acting on leptin receptor (LepR-b)-expressing neurons. To determine whether LepR-b neurons mediate the metabolic actions of Irs2 in the brain, we utilized Lepr(cre) together with Irs2(L/L) to ablate Irs2 expression in LepR-b neurons (Lepr(ΔIrs2)). Lepr(ΔIrs2) mice developed obesity, glucose intolerance, and insulin resistance. Leptin action was not altered in young Lepr(ΔIrs2) mice, although insulin-stimulated FoxO1 nuclear exclusion was reduced in Lepr(ΔIrs2) mice. Indeed, deletion of Foxo1 from LepR-b neurons in Lepr(ΔIrs2) mice normalized energy balance, glucose homeostasis, and arcuate nucleus gene expression. Thus, Irs2 signaling in LepR-b neurons plays a crucial role in metabolic sensing and regulation. While not required for leptin action, Irs2 suppresses FoxO1 signaling in LepR-b neurons to promote energy balance and metabolism.  相似文献   

8.
Leptin has been shown to improve insulin sensitivity and glucose metabolism in obese diabetic ob/ob mice, yet the mechanisms remain poorly defined. We found that 2 d of leptin treatment improved fasting but not postprandial glucose homeostasis, suggesting enhanced hepatic insulin sensitivity. Consistent with this hypothesis, leptin improved in vivo insulin receptor (IR) activation in liver, but not in skeletal muscle or fat. To explore the cellular mechanism by which leptin up-regulates hepatic IR activation, we examined the expression of the protein tyrosine phosphatase PTP1B, recently implicated as an important negative regulator of insulin signaling. Unexpectedly, liver PTP1B protein abundance was increased by leptin to levels similar to lean controls, whereas levels in muscle and fat remained unchanged. The ability of leptin to augment liver IR activation and PTP1B expression was also observed in vitro in human hepatoma cells (HepG2). However, overexpression of PTP1B in HepG2 cells led to diminished insulin-induced IR phosphorylation, supporting the role of PTP1B as a negative regulator of IR activation in hepatocytes. Collectively, our results suggest that leptin acutely improves hepatic insulin sensitivity in vivo with concomitant increases in PTP1B expression possibly serving to counterregulate insulin action and to maintain insulin signaling in proper balance.  相似文献   

9.
Park S  Hong SM  Lee JE  Sung SR 《Life sciences》2007,80(26):2428-2435
Investigated in this study are the effects and mechanisms of exercise and chlorpromazine (CPZ), a widely used conventional antipsychotic drug, on the hepatic insulin sensitivity of 90% pancreatectomized (Px) male Sprague–Dawley rats. The Px diabetic rats were provided with 0, 5, or 50 mg CPZ per kg of body weight (No-CPZ, LCPZ, or HCPZ) for 8 weeks, and half of each group had regular exercise. LCPZ did not exacerbate hepatic insulin sensitivity through insulin and leptin signaling in diabetic rats. However, HCPZ decreased whole-body glucose infusion rates in hyperinsulinemic clamped states, but not whole-body glucose uptake. This was due to the elevated hepatic glucose output in hyperinsulinemic states. The decreased hepatic insulin sensitivity was associated with insulin receptor substrate-2 (IRS2) protein levels in the liver. Decreased IRS2 levels attenuated hepatic insulin and leptin signaling pathways in hyperinsulinemic states, which elevated glucose production by inducing phosphoenolpyruvate carboxykinase expression. Long-term exercise recovered hepatic insulin sensitivity attenuated by HCPZ to reduce the hepatic glucose output in hyperinsulinemic clamped states. This recovery was related to enhanced insulin and leptin signaling via increased IRS2 gene and protein levels by activating the cAMP responding element-binding protein, but exercise improved only insulin signaling. In conclusion, HCPZ exacerbates hepatic insulin action by attenuating insulin and leptin signaling in type 2 diabetic rats, while regular exercise partially reverses the attenuation of hepatic insulin sensitivity by improving insulin signaling. Enhancement of insulin and leptin signaling through an induction of IRS2 may play an important role in improving hepatic glucose homeostasis.  相似文献   

10.
Soluble leptin receptor levels in patients with chronic renal failure   总被引:2,自引:0,他引:2  
Soluble leptin receptor (SLR) is the extracellular part of the leptin receptor. This protein is released into circulation and constitutes the main circulating leptin-binding protein. The aim of our study was to measure SLR concentrations in patients with chronic renal failure (CRF) and healthy subjects and to explore the relationship of SLR to other hormones and cytokines. The patients with CRF had significantly higher serum leptin, TNF-alpha and insulin levels than healthy subjects (25.1+/-23.5 vs. 9.4+/-7.6 ng.ml(-1) (S.D.); 14.2+/-4.2 vs. 4.55+/-2.5 ng.ml(-1); 39.8+/-36.1 vs. 20.3+/-11.1 mU.l(-1)). Serum soluble leptin receptor levels did not differ between these groups (19.1+/-11.3 vs. 19.6+/-6.1 U.ml(-1)). An inverse relationship between serum SLR and leptin levels was found in both groups. In patients with CRF the inverse relationship between SLR and insulin, body fat content and total protein levels were also found, while in healthy subjects only inverse relationship of SLR with insulin and albumin concentrations were detected. We conclude that soluble leptin receptor levels in patients with chronic renal failure do not differ from those of healthy subjects despite higher serum leptin levels in CRF patients. The physiological consequences of this finding require further investigation.  相似文献   

11.
Leptin is an adipocyte-derived circulating satiety factor with a variety of biological effects. Evidence has accumulated suggesting that leptin may modulate glucose and lipid metabolism. In the present study, we examined lipid metabolism in transgenic skinny mice with elevated plasma leptin concentrations. The plasma concentrations of triglycerides and free fatty acids in transgenic skinny mice were 71.5 (P < 0.01) and 89.1% (P < 0.05) of those in their nontransgenic littermates, respectively. Separation of plasma into lipoprotein classes by ultracentrifugation revealed that very low density lipoprotein-triglyceride concentrations were markedly reduced in transgenic skinny mice relative to the controls. The clearance of triglycerides estimated by a fat-loading test was enhanced in transgenic skinny mice; the triglyceride concentration in transgenic skinny mice 3 h after fat loading was 39.7% (P < 0.05) of that of their nontransgenic littermates. Postheparin plasma lipoprotein lipase activity increased 1.4-fold (P < 0.05) in transgenic skinny mice. Our data demonstrated a significant reduction in plasma triglyceride concentrations, accompanied by increased lipoprotein lipase activity in transgenic skinny mice overexpressing leptin, suggesting that leptin plays a role in long-term triglyceride metabolism.  相似文献   

12.
Leptin-deficient obese mice (ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (approximately 1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.  相似文献   

13.
The hormone leptin plays a crucial role in maintenance of body weight and glucose homeostasis. This occurs through central and peripheral pathways, including regulation of insulin secretion by pancreatic beta cells. To study this further in mice, we disrupted the signaling domain of the leptin receptor gene in beta cells and hypothalamus. These mice develop obesity, fasting hyperinsulinemia, impaired glucose-stimulated insulin release, and glucose intolerance, similar to leptin receptor null mice. However, whereas complete loss of leptin function causes increased food intake, this tissue-specific attenuation of leptin signaling does not alter food intake or satiety responses to leptin. Moreover, unlike other obese models, these mice have reduced fasting blood glucose. These results indicate that leptin regulation of glucose homeostasis extends beyond insulin sensitivity to influence beta cell function, independent of pathways controlling food intake. These data suggest that defects in this adipoinsular axis could contribute to diabetes associated with obesity.  相似文献   

14.
15.
Protein tyrosine phosphatase 1B (PTP1B), a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s) of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/-)) were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/-) mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD)-fed adip-crePTP1B(-/-) mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR) and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α) expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.  相似文献   

16.
It was previously shown that circulating levels of leptin and apolipoprotein M (apoM) correlate to each other. In this study, we examined whether plasma leptin and leptin-receptors are of importance for apoM expression in vivo. It was found that in both liver and kidney, expression of apoM was significantly lower in leptin deficient ob/ob mice and in leptin-receptor deficient db/db mice than in control mice. Furthermore, leptin administration (0.5 or 1.5 microg/g body weight) significantly increased plasma apoM levels and apoM mRNA levels in liver and in kidney in ob/ob mice. We conclude that both leptin and leptin-receptor are essential for the apoM expression, indicating that leptin is physiologically regulating apoM synthesis in vivo.  相似文献   

17.
In addition to acting in the central nervous system, leptin also acts on peripheral tissues such as liver to provide a protection against lipid accretion. Previous evidence from human and animal model indicates that exercise training reduces circulating leptin levels beyond the changes in adiposity levels. Because liver is one of the main peripheral organs for leptin action, this present study was designed to determine whether leptin receptors expression in liver is changed by exercise training. Female rats trained (TR) or kept sedentary (Sed) for 8 weeks were submitted either to a standard (SD) diet for 8 weeks or for 6 weeks followed by 2 weeks of high-fat (HF) or high-carbohydrate (HC) feeding. Food intake, adiposity levels, circulating plasma leptin and insulin concentrations along with the hepatic expression of leptin receptors (ObR-a, -b, and -e) and peroxisome proliferator-activated receptor α (PPARα) and peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α), were measured in all the animals. Intra-abdominal fat depots were increased under the HF but not under the HC diet. As expected, exercise training decreases intra-abdominal adiposity in animals fed with the SD and the HF diet, and to a lesser extent in HC-fed rats. Plasma leptin levels either expressed in absolute values or in values relative to adiposity levels were significantly (P < 0.05) increased with the HF diet and significantly decreased in TR animals, independently of the diet. Moreover, a significant (< 0.01) reduction in hepatic gene expression of ObR-a, -b and -e was found in TR animals in all the three diet conditions. PPARα and PGC-1α mRNAs were also decreased (P < 0.05) in TR animals in two out of three diet conditions. The present findings indicate that exercise training-induced decrease in plasma leptin levels is accompanied by a reduction in gene expression of three different isoforms of leptin receptors in liver.  相似文献   

18.
Dissecting the role of insulin in the complex regulation of triglyceride metabolism is necessary for understanding dyslipidemia and steatosis. Liver insulin receptor knockout (LIRKO) mice show that in the physiological context of feeding, hepatic insulin signaling is not required for the induction of mTORC1, an upstream activator of the lipogenic regulator, SREBP-1c. Feeding induces SREBP-1c mRNA in LIRKO livers, though not to the extent observed in controls. A high fructose diet also partially induces SREBP-1c and lipogenic gene expression in LIRKO livers. Insulin signaling becomes more important in the pathological context of obesity, as knockdown of the insulin receptor in ob/ob mice, a model of Type 2 diabetes, using antisense oligonucleotides, abolishes the induction of SREBP-1c and its targets by obesity and ameliorates steatosis. Thus, insulin-independent signaling pathways can partially compensate for insulin in the induction of SREBP-1c by feeding but the further induction by obesity/Type 2 diabetes is entirely dependent upon insulin.  相似文献   

19.
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c‐Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting‐induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c‐Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting‐triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA‐B. Our findings identify the role of leptin in the regulation of food intake.  相似文献   

20.
Leptin, a pleiotropic hormone regulating food intake and metabolism, plays an important role in the regulation of inflammation and immunity. We previously demonstrated that serum leptin levels are profoundly increased in mice which received azoxymethane (AOM) and dextran sulfate sodium (DSS) as tumor-initiator and -promoter, respectively, in a colon carcinogenesis model. In this study, we attempted to address underlying mechanism whereby leptin is up-regulated in this rodent model. Five-week-old male ICR mice were given a single intraperitoneal injection of AOM (week 0), followed by 1% DSS in drinking water for 7 days. Thereafter, the weights of visceral fats and the serum concentration of leptin were determined at week 20. Of interest, the relative epididymal fat pad and mesenteric fat weights, together with serum leptin levels in the AOM and/or DSS-treated mice were markedly increased compared to that in untreated mice. In addition, leptin protein production in epididymal fat pad with AOM/DSS-treated mice was 4.7-fold higher than that of control. Further, insulin signaling molecules, such as protein kinase B (Akt), S6, mitogen-activate protein kinase/extracellular signaling-regulated kinase 1/2, and extracellular signaling-regulated kinase 1/2, were concomitantly activated in epididymal fat of AOM/DSS-treated mice. This treatment also increased the serum insulin and IGF-1 levels. Taken together, our results suggest that higher levels of serum insulin and IGF-1 promote the insulin signaling in epididymal fat and thereby increasing serum leptin, which may play an crucial role in, not only obesity-related, but also -independent colon carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号