首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
贝类贝壳在生物材料学及仿生学研究中占据着重要地位。贝壳基质蛋白质是贝壳中的主要有机质成分,对贝壳的形成以及贝壳的力学性能至关重要。翡翠贻贝(Perna viridis)贝壳主要由肌棱柱层和珍珠质层两种微观结构组成,其结构层次较简单,是研究贝壳基质蛋白质及其与贝壳形成关系的极好材料。为深入研究翡翠贻贝贝壳基质蛋白质的分子组成以及分布特点,首先采用扫描电子显微镜,观察翡翠贻贝贝壳内表面珍珠质层和肌棱柱层的微观结构;采用刮取法获得贝壳内表面珍珠质层和肌棱柱层的粉末;对不同层次的贝壳粉末,利用酸溶法去除碳酸钙成分,所获得的有机质组分通过离心将其分为酸可溶性组分和酸不溶性组分。采用Illumina深度测序技术对翡翠贻贝外套膜组织进行大规模测序和序列组装,在此基础上,采用LC-MS/MS质谱技术结合外套膜转录组数据库搜索,对翡翠贻贝肌棱柱层和珍珠质层贝壳基质蛋白质开展组学分析。扫描电镜观察结果表明,翡翠贻贝贝壳有两种不同形貌结构的层次,其中珍珠质层为片状堆叠结构,而肌棱柱层为柱状结构。翡翠贻贝外套膜转录组测序共计获得 69 859 条Unigene。蛋白质组学鉴定结果表明,翡翠贻贝贝壳中总计鉴定到蛋白质54种,其中38种为肌棱柱层所特有蛋白质,3种珍珠质层特有蛋白质,另有13种在珍珠质层和肌棱柱层均被鉴定到。肌棱柱层特有蛋白质的分子多样性明显强于珍珠质层。上述研究为进一步探讨贝壳不同微观层次的形成机制,以及贝壳基质蛋白质对贝壳不同结构层次的调控作用机制奠定了基础。  相似文献   

2.
不同pH值对三角帆蚌珍珠质分泌的影响   总被引:14,自引:0,他引:14  
邱安东  石安静 《动物学报》1999,45(4):361-370
运用多种组织化学方法和透射电镜技术,研究了5种pH水环境(pH5、6、7、8、9)对三角帆砷外套膜珍珠质分泌的影响机制,结果表明,在中性水环境中,贝体能积极地从外界水环境中吸收钙,并能旺盛地合成和分泌贝壳珍珠层及珍珠有机基质前体物质,持续的酸性水环境导致贝体的钙严重丢失,并引起珍珠质分泌细胞对有机基质前体物质的合成和分泌能力减弱,持续的碱性水环境虽能导致贝体对钙的积累,但珍珠质分泌细胞合成和分泌珍  相似文献   

3.
大珠母贝外套膜表皮细胞的超微结构   总被引:8,自引:0,他引:8  
杜晓东 《动物学报》1999,45(3):246-251
利用透射电系统地观察大珠母贝的外套有皮细胞,结果表明,细胞可分为5种,即柱状表皮细胞、凸细胞、电子透明大粒细胞、电子稠密粒细胞和电子透明小粒细胞。它们在不同区域的分布、形态和数量变化与外套膜的功能分化密切相关,尤其是与贝壳组分的分泌有关。结缔组织中也分布着许多闰细胞和电子稠密粒细胞,它们可作变形运动进入表皮层。  相似文献   

4.
紫苏腺毛的形态发生研究   总被引:4,自引:0,他引:4  
紫苏叶上有两种腺毛:质状腺毛和头状腺毛。两者都具1个基细胞、1个柄细胞和头部。前者的头部可由1、2、4或8个分泌细胞组成,扩展成质状;后者的头部由1、2或4个分泌细胞组成,聚成圆球状。两种腺毛的原始细胞都来源于原表皮细胞,经两次平周分裂产生基细胞、柄细胞和顶细胞。在腺毛后期的形态发生中,柄细胞的分化状态决定腺毛的类型。若柄细胞保持扁平关且处于分生状态时,其顶细胞将发育成质状腺毛的头部;若柄细胞纵向  相似文献   

5.
为了探索对映-贝壳杉烷二萜leukamenin E对细胞骨架和细胞迁移的影响,该文采用MTT法、吉姆萨染色、流式细胞术及免疫荧光技术研究了leukamenin E诱导HeLa细胞的3种胞质骨架重排,细胞迁移抑制及可能的作用机制。结果显示,0.4~1.0μmol/L的leukamenin E可导致G_1期阻滞,抑制细胞增殖,使细胞形态及核形态发生显著变化,细胞伪足减少以及"肾形核"细胞数量增多,并抑制细胞迁移;Leukamenin E可显著改变HeLa细胞微管和角蛋白纤维的排布,诱导微管和角蛋白纤维在核周聚集,但减少胞质中应力纤维数量。Leukamenin E显著升高HeLa细胞内活性氧(ROS)水平,但加入活性氧清除剂NAC可明显减弱leukamenin E诱导的细胞形态改变、细胞骨架重排以及细胞迁移的抑制作用,表明活性氧途径与上述变化相关联。上述结果说明,leukamenin E通过ROS水平升高调节相关信号途径,导致HeLa细胞骨架重排而引起细胞及细胞核形态改变,同时导致了细胞的迁移的抑制效应。  相似文献   

6.
作者用扫描电镜及相差显微镜,对椭圆背角无齿蚌外套膜组织培养与未培养细胞的分泌活动进行了研究,观察到两者的分泌活动都是十分旺盛的。培养细胞有局部分泌和顶浆分泌。细胞分泌形态观察到三种:(1)分泌端形成由膜包裹的突起,突起逐渐伸长,基部变成细颈,最后脱离细胞成为分泌泡(局部分泌);(2)细胞端部伸出长足,将分泌物排到较远处分泌后,长足缩回恢复原状;(3)分泌端伸出很多细枝,分泌物随后如液流式涌出细胞(顶浆分泌)。取外套膜色线边组织为材料,培养后在组织块和细胞上有角质素(与贝壳最外层相似)类的茶褐色结晶和无定形分泌物形成;用去掉色线边的外表皮组织块培养,则有珍珠(与贝壳最内层相似)状的白色和淡黄色结晶生成。表明了细胞在适宜的条件下培养,所形成的分泌物的性质可能与活体相同。因此大批量培养细胞可能得到人们希望获得的细胞产物。    相似文献   

7.
鲻鱼甲状腺免疫组织化学与超微结构   总被引:4,自引:0,他引:4  
用组织学、免疫组织化学和电镜技术对鲻鱼甲状腺的分布与形态结构进行研究。结果表明,鲻鱼甲状腺滤泡分散地分布在第1对至第3对鲻弓的入鳃动脉之间;构成同一滤泡的单层上皮细胞呈扁平形和立方形两种形态,反映出同一滤泡中上皮细胞生理活动的不同步,且发现不同发育时期的鲻鱼这两种形态细胞的比例有显著差异。用特异性甲状腺球蛋白(TG)抗体对甲状腺滤泡的免疫染色反应显示,阳性物质分布在滤泡上皮细胞的脑膜及围绕滤泡腔的周边与中央胶质,幼年与成年鲻鱼甲状腺滤泡的免疫阳性反应部位有所不同。两种不同活动状态的细胞,扁平形细胞和立方形细胞,在核与胞质的超微结构上有显著不同。扁平形细胞的核为扁平形或椭圆形,核内常染色质十分丰富,核膜光滑,核周腔和核孔没有扩张,胞质中各种细胞器发育较差;立方形细胞的核膜高度凹陷,将核分为2叶至3叶,核周腔和核孔扩张,胞质中各种细胞器发育良好,出现长棒形和哑铃形线粒体,且数量明显多于扁平形细胞,多层粗面内质网呈板层状排列,还有发育好的高尔基复合体。另外,我们还观察到一种介于扁平形细胞和立方形细胞之间的中间型细胞,其胞质和核的发育明显好于扁平形细胞,但比立方形细胞差。上述结果可为了解鲻鱼甲状腺滤泡细胞分泌活动的机制提供基础资料[动物学报49(2):230—237,2003]。  相似文献   

8.
褶纹冠蚌外套膜组织培养的分泌物的偏光显微镜…   总被引:3,自引:0,他引:3  
以淡水育珠贝中珍珠形成较快的褶纹冠蚌为材料,用相差显微镜观察组织培养的外套膜的分泌物的形成和变化,用偏光显微镜观察分泌物的双折射现象,并与活体外套膜的分泌物、贝壳的角质层、棱柱层、珍珠层的双折射现象进行比较。结果表明:离体培养的外套膜细胞不仅能产生活体细胞相同的分泌物,而且分泌物还能在培养过程中形成结晶,并逐渐生长。发现外套膜的不同部位分区培养所形成的分泌物的性状与结晶性质和活体有一致性,表明组织  相似文献   

9.
糖结合蛋白(glycan-binding protein,GBP)在细胞生命周期中扮演着重要角色,如细胞识别、运输、免疫、代谢、增殖分化及细胞间的相互作用等.目前,对GBP的改变对细胞生物过程产生影响的研究甚少.本研究用糖芯片技术对肝癌细胞系Hep G2和正常肝细胞系L02表达的GBP进行研究;糖细胞化学验证确定差异表达GBP在肝癌细胞系中的变化和分布.结果显示,8种糖探针(如SL、LNT和Gal NAc等)和5种糖探针(如Man、Man-9-Glycan,Xyl等)分别对应的GBP在Hep G2细胞中表达上调或下调.糖细胞化学结果显示:Gal NAc识别的GBPs主要表达在Hep G2的胞膜、中央胞质、核周胞质区域,而在L02的相同区域表达减弱;Neu Ac识别的GBPs主要表达在L02的胞膜区及核周胞质区,而在Hep G2细胞的相同区域表达减弱.这些数据为寻找新的肝癌发病机制和抗肿瘤策略提供了有用信息.  相似文献   

10.
贝壳是一种具有优异力学性能的生物硬组织,贝壳基质蛋白质对贝壳的形成具有重要意义。厚壳贻贝(Mytilus coruscus)贝壳中发现一种类似胶原蛋白质的新型贝壳基质蛋白质,命名为collagen-like protein 2(CLP-2)。然而,该蛋白质的结构与功能以及对贝壳形成的影响机制尚不清楚。为此,本研究对CLP 2开展了序列分析;进一步采取密码子优化结合原核重组表达策略,开展了CLP-2的重组表达;在此基础上分析了重组CLP-2对酸钙结晶的诱导、结晶速率抑制以及碳酸钙结合能力。对CLP-2的序列分析结果表明,该蛋白质序列中含有信号肽及两个Von Willebrand factor A(VWA)结构域。CLP-2在数据库中尚无高同源性蛋白质存在,表明这是一种较为新颖的贝壳基质蛋白。所获得的重组CLP-2对碳酸钙体外结晶表现出明显的诱导作用,扫描电镜以及傅里叶红外光谱结果表明,重组CLP-2可诱导碳酸钙晶体的形貌由立方体形转化为球形,并在高浓度下进一步转化为哑铃形;同时,重组CLP-2可促使碳酸钙晶体的晶型由方解石型向文石型转化;重组CLP-2在体外具有碳酸钙晶体结合作用;此外,重组CLP-2能显著抑制碳酸钙晶体的结晶速度(P<0.01),并具有浓度依赖性。上述结果表明,厚壳贻贝贝壳CLP-2蛋白质在贝壳,特别是文石型肌棱柱层的生物矿化过程中具有重要作用。上述研究为深入了解贻贝贝壳的形成机制,以及胶原类蛋白质对生物矿化过程的影响奠定了基础。  相似文献   

11.
Checa A 《Tissue & cell》2000,32(5):405-416
The periostracum in Unionidae consists of two layers. The outer one is secreted within the periostracal groove, while the inner layer is secreted by the epithelium of the outer mantle fold. The periostracum reaches its maximum thickness at the shell edge, where it reflects onto the shell surface. Biomineralization begins within the inner periostracum as fibrous spheruliths, which grow towards the shell interior, coalesce and compete mutually, originating the aragonitic outer prismatic shell layer. Prisms are fibrous polycrystalline aggregates. Internal growth lines indicate that their growth front is limited by the mantle surface. Transition to nacre is gradual. The first nacreous tablets grow by epitaxy onto the distal ends of prism fibres. Later growth proceeds onto previously deposited tablets. Our model involves two alternative stages. During active shell secretion, the mantle edge extends to fill the extrapallial space and the periostracal conveyor belt switches on, with the consequential secretion of periostracum and shell. During periods of inactivity, only the outer periostracum is secreted; this forms folds at the exit of the periostracal groove, leaving high-rank growth lines. Layers of inner periostracum are added occasionally to the shell interior during prolonged periods of inactivity in which the mantle is retracted.  相似文献   

12.
网湖水域中绢丝丽蚌贝壳形态的研究   总被引:4,自引:2,他引:2  
对网湖1368枚绢丝丽蚌贝壳形态研究表明:前排小棘或棘痕数介于3-5之间,4个者居多;所排小棘或棘痕数介于1-4之间,2个者居多。壳长与壳厚的直线回归方程为:L=7.2406T+2.4392,贝壳的角质层最薄,呈棕褐色或者黑色;核柱层稍厚,呈黄褐色;珍珠层最厚,皎白闪亮。生长轮在棱柱层上和珍珠层外表面清晰可见。贝壳外表面背部肋嵴细弱,只在近壳顶处较明显;其棱柱层背部和后部呈黄褐色者为雌蚌。贝壳外表面背部肋嵴粗壮,且整个背部都十分显著;其棱柱层背部和后部呈红色或红褐色者为雄蚌。  相似文献   

13.
THE MANTLE AND SHELL OF SOLEMYA PARKINSONI (PROTOBRANCHIA: BIVALVIA)   总被引:1,自引:0,他引:1  
The shell of Solemya exhibits considerable flexibility which is further enhanced by the marked extension of the periostracum beyond the calcareous portions of the valves. This fcature, more than any other, has made possible the habit, unique among bivalves, of burrowing deep within the substrate without direct contact with the water above. The inner calcareous layer of tho valves is restricted to a small area near the umbones while the outer calcareous layer is thin and contains a high proportion of organic material. The shell conchiolin consists mainly of protein, varying in composition, but much of it strengthcned by quinone-tanning, and in ccrtain regions probably by the presence of appreciable quantities of chitin. The ligament, although superficially resembling an amphidetic structure, is opisthodetic, the extcnsion anterior to the umbones consisting of anterior outer layer only.
The mantle is characterized by an extension of the outer fold of the mantle margin which has effected equally both the inner and outer surfaces of this fold. The secretory epithelium and the modified pallial musculature, contraction of which results in the intucking and plaiting of the periostracum, is dcscribed. Simple tubular oil glands open at the mantlo margin and are responsible for the water-repellent nature of the periostracum.
The form of the mantlelshell and that of the enclosed body are discussed and compared with those of other bivalves in which elongation of the mantle/shell is achieved in a different way. It is concluded that the mantlelshell of Solemya is of little value in determining its relationships, and that the greatly elongatod ligament, the edentulous hinge and the flexible shell are all adaptations to a specialized mode of life.  相似文献   

14.
Guenther J  De Nys R 《Biofouling》2006,22(3-4):163-171
A field experiment documented the development of fouling communities on two shell regions, the lip and hinge, of the pearl oyster species Pinctada fucata, Pteria penguin and Pteria chinensis. Fouling communities on the three species were not distinct throughout the experiment. However, when each species was analysed separately, fouling communities on the lip and hinge of P. penguin and P. chinensis were significantly different during the whole sampling period and after 12 weeks, respectively, whereas no significant differences could be detected for P. fucata. There was no significant difference in total fouling cover between shell regions of P. fucata and P. chinensis after 16 weeks; however, the hinge of P. penguin was significantly more fouled than the lip. The most common fouling species (the hydroid Obelia bidentata, the bryozoan Parasmittina parsevalii, the bivalve Saccostrea glomerata and the ascidian Didemnum sp.) showed species-specific fouling patterns with differential fouling between shell regions for each species. The role of the periostracum in determining the community development of fouling species was investigated by measuring the presence and structure of the periostracum at the lip and hinge of the three pearl oyster species. The periostracum was mainly present at the lip of the pearl oysters, while the periostracum at the hinge was absent and the underlying prismatic layer eroded. The periostracum of P. fucata lacked regular features, whereas the periostracum of P. penguin and P. chinensis consisted of a regular strand-like structure with mean amplitudes of 0.84 microm and 0.65 microm, respectively. Although the nature and distribution of fouling species on the pearl oysters was related to the presence of the periostracum, the periostracum does not offer a fouling-resistant surface for these pearl oyster species.  相似文献   

15.
The structure and growth of the polyplacophoran shell, characteristically consisting of eight plates surrounded by a girdle, is examined in the light of current views on the relationships of mantle and shell in the Bivalvia. The periostracum and outer and inner calcareous layers of the shell of the latter group are homologous with the cuticle, tegmentum and articulamentum respectively of the shell of the Polyplacophora. The margin of the mantle consists of a large marginal fold, which secretes the cuticular girdle, and a small accessory fold bearing mucous cells. These are functionally comparable with all three folds of the mantle margin found in other molluscs, although anatomically the marginal fold of the chitons probably represents only the inner surface of the outer fold of the mantle margin.
The cuticle not only forms the girdle, which bears calcified spines or spicules, but also extends between the shell plates. The principal part of the cuticle consists largely of mucopolysaccharide material but there is also a thin discrete inner region which is similar chemically to the periostracum of other molluscs. The cuticle, possibly without spines, probably covered the entire dorsal surface of a primitive placophoran and beneath this, plates developed. As these grew the cuticle became worn away except marginally and between the plates. It is suggested that a covering of mucus over the visceropallium may have been the forerunner of the molluscan shell and the possible evolutionary relationships of the shell throughout the Mollusca are discussed.  相似文献   

16.
The structure and growth of the polyplacophoran shell, characteristically consisting of eight plates surrounded by a girdle, is examined in the light of current views on the relationships of mantle and shell in the Bivalvia. The periostracum and outer and inner calcareous layers of the shell of the latter group are homologous with the cuticle, tegmentum and articulamentum respectively of the shell of the Polyplacophora. The margin of the mantle consists of a large marginal fold, which secretes the cuticular girdle, and a small accessory fold bearing mucous cells. These are functionally comparable with all three folds of the mantle margin found in other molluscs, although anatomically the marginal fold of the chitons probably represents only the inner surface of the outer fold of the mantle margin.
The cuticle not only forms the girdle, which bears calcified spines or spicules, but also extends between the shell plates. The principal part of the cuticle consists largely of mucopolysaccharide material but there is also a thin discrete inner region which is similar chemically to the periostracum of other molluscs. The cuticle, possibly without spines, probably covered the entire dorsal surface of a primitive placophoran and beneath this, plates developed. As these grew the cuticle became worn away except marginally and between the plates. It is suggested that a covering of mucus over the visceropallium may have been the forerunner of the molluscan shell and the possibleevolutionary relationships of the shell throughout the Mollusca are discussed.  相似文献   

17.
In molluscan shellfish, pigmentation is frequently observed in the calcified shell, but the molecular basis of this process is not understood. Here, we report two tyrosinase proteins (Pfty1 and Pfty2) found in the prismatic shell layer of the pearl oyster Pinctada fucata; this layer is recognized as the pigmented region in P. fucata. The protein sequences were deduced from the corresponding cDNAs and confirmed by MALDI-TOF/TOF analysis. The sequences suggest that both tyrosinases have two copper-binding sites in similar N-terminal domains that are homologous to tyrosinases of cephalopods and hemocyanins of gastropods. In turn, this suggests that bivalve tyrosinases are evolved from a common ancestral copper-binding protein in the mollusc. Pfty1 and Pfty2 were specifically expressed in the mantle, and their expression in the mantle is different from each other, suggesting that these tyrosinases have distinctive roles in melanogenesis in shells.  相似文献   

18.
THE PALLIAL EYES OF CTENOIDES FLORIDANUS (BIVALVIA: LIMOIDEA)   总被引:1,自引:0,他引:1  
The structure of the pallial eye in the Limidae has neverbeen elucidated properly, largely because they are difficultto see among the mass of surrounding mantle tentacles and becausethey are few, small, and lose their pigmentation when preserved.Possibly two eye types are present, simple cup-shaped receptorsin species of Lima, like those seen in the Arcoida, and morecomplex invaginated ones in Ctenoides. The pallial eyes (;18on both lobes) of Ctenoides floridanus are formed by invaginationof the middle mantle fold at the periostracal groove, so thatall its contained structures are derived from the outer andlight is perceived through the inner epithelia of this fold.The eye comprises a simple multicellular lens and a photoreceptiveepithelium beneath it of lightly pigmented cells and alternatingvacuolated, support cells. In some species of the Arcoidea, Limopsoidea and Pterioidea, pallialeyes occur on the outer mantle fold and thus beneath the periostracum(and shell). The pallial eyes of Ctenoides floridanus and otherpterioideans, e.g. species of the Pectinidae, occur on the middlefold and may thus have improved vision. In the Cardiodea, Tridacniidaeand Laternulidae (Anomalodesmata) pallial eyes occur on theinner folds. There is thus a loose phylogenetic trend, in which Ctenoidesis a critical link, of increasing eye sophistication correlatedwith the historical age of the clades possessing them. (Received 16 November 1999; accepted 20 January 2000)  相似文献   

19.
Using scanning electron and histological techniques on specimensof the bivalve Corbicula fluminea a new relationship betweenmantle, shell and periostracum has been observed, apparentlyfor the first time. Here we demonstrate that several extensionsof the mantle epithelium pierce the shell to join the innerlayer of the two-layered periostracum. The mantle extensionsare confirmed as unicellular processes. We suggest that theycould serve the animal in the mobilization of calcium from theshell for buffering the extrapalhal fluid under anaerobic conditions,when organic acids accumulate or when an extra contributionof Ca2+ is required (Received 5 January 1994; accepted 30 March 1994)  相似文献   

20.
J. Guenther  R. De Nys 《Biofouling》2013,29(3):151-159
Abstract

A field experiment documented the development of fouling communities on two shell regions, the lip and hinge, of the pearl oyster species Pinctada fucata, Pteria penguin and Pteria chinensis. Fouling communities on the three species were not distinct throughout the experiment. However, when each species was analysed separately, fouling communities on the lip and hinge of P. penguin and P. chinensis were significantly different during the whole sampling period and after 12 weeks, respectively, whereas no significant differences could be detected for P. fucata. There was no significant difference in total fouling cover between shell regions of P. fucata and P. chinensis after 16 weeks; however, the hinge of P. penguin was significantly more fouled than the lip. The most common fouling species (the hydroid Obelia bidentata, the bryozoan Parasmittina parsevalii, the bivalve Saccostrea glomerata and the ascidian Didemnum sp.) showed species-specific fouling patterns with differential fouling between shell regions for each species. The role of the periostracum in determining the community development of fouling species was investigated by measuring the presence and structure of the periostracum at the lip and hinge of the three pearl oyster species. The periostracum was mainly present at the lip of the pearl oysters, while the periostracum at the hinge was absent and the underlying prismatic layer eroded. The periostracum of P. fucata lacked regular features, whereas the periostracum of P. penguin and P. chinensis consisted of a regular strand-like structure with mean amplitudes of 0.84 μm and 0.65 μm, respectively. Although the nature and distribution of fouling species on the pearl oysters was related to the presence of the periostracum, the periostracum does not offer a fouling-resistant surface for these pearl oyster species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号