首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
DNA methylation at cytosine residues in CpG dinucleotides is a component of epigenetic marks crucial to mammalian development. In preimplantation stage embryos, a large part of genomic DNA is extensively demethylated, whereas the methylation patterns are faithfully maintained in certain regions. To date, no enzymes responsible for the maintenance of DNA methylation during preimplantation development have been identified except for the oocyte form of DNA (cytosine-5)-methyltransferase 1 (Dnmt1o) at the 8-cell stage. Herein, we demonstrate that the somatic form of Dnmt1 (Dnmt1s) is present in association with chromatin in MII-stage oocytes as well as in the nucleus throughout preimplantation development. At the early one-cell stage, Dnmt1s is asymmetrically localized in the maternal pronuclei. Thereafter, Dnmt1s is recruited to the paternal genome during pronuclear maturation. During the first two cell cycles after fertilization, Dnmt1s is exported from the nucleus in the G2 phase in a CRM1/exportin-dependent manner. Antibody microinjection and small interfering RNA-mediated knock-down decreases methylated CpG dinucleotides in repetitive intracisternal A-type particle (IAP) sequences and the imprinted gene H19. These results indicate that Dnmt1s is responsible for the maintenance methylation of particular genomic regions whose methylation patterns must be faithfully maintained during preimplantation development.  相似文献   

2.
The oocyte-specific subtype of the linker histone H1 is H1FOO, which constitutes a major part of oocyte chromatin. H1foo is expressed in growing oocytes, through fertilization, up until the two-cell embryo stage, when it is subsequently replaced by somatic H1 subtypes. To elucidate whether an epigenetic mechanism is involved in the limited expression of H1foo, we analyzed the dynamics of the DNA methylation status of the H1foo locus in germ and somatic cells. We identified a tissue-dependent and differentially methylated region (T-DMR) upstream of the H1foo gene, which was hypermethylated in sperm, somatic cells, and stem cell lines. This region was specifically unmethylated in the ovulated oocyte, where H1foo is expressed. 5-Aza-2'-deoxycytidine treatments and luciferase assays provided in vitro evidence that DNA methylation plays a role in repressing H1foo in nonexpressing cells. DNA methylation analyses of fetal germ cells revealed the T-DMR to be hypomethylated in female and male germ cells at Embryonic Day 9.5 (E9.5), whereas it was highly methylated in somatic cells at this stage. Intriguingly, the unmethylated status was continuously observed throughout oogenesis at E9.5, E12.5, E15.5, E18.5, in mature oocytes, and after fertilization, in E3.5 blastocysts. In comparison, male germ cells acquired methylation beyond E18.5. These data demonstrate a continuously unmethylated circuit at the H1foo locus in the female germline.  相似文献   

3.
DMAP1 (DNMT1-associated protein 1) is a member of the TIP60-p400 complex that maintains embryonic stem (ES) cell pluripotency and a complex containing the somatic form of DNA methyltransferase 1 (DNMT1s). DMAP1 interacts with DNMT1s through a domain that is absent in Dnmt1(V)(/)(V) mice expressing just the oocyte form (DNMT1o). A Dmap1-null allele was generated to study the role of DMAP1 in development. Consistent with the phenotypes of loss of other members of the TIP60-p400 complex, Dmap1(-/-) mice died during preimplantation in both Dnmt1(+/+) and Dnmt1(V)(/)(V) backgrounds. Unexpectedly, in the Dnmt1(V)(/)(V) background, Dmap1(+/-) parents produced mainly Dmap1(+/-) mice. Most Dmap1(+/+) progeny died during midgestation, with loss of DNA methylation on imprinted genes, suggesting that DMAP1 influences maintenance methylation mediated by DNMT1o. In this regard, a DMAP1-DNMT1o complex was detected in ES cells when DNMT1o was stably expressed but not when transiently expressed, indicating a novel interaction between DMAP1 and DNMT1o. These results suggest that DMAP1-DNMT1s and DMAP1-DNMT1o interactions are essential for normal development and that DMAP1-DNMT1o complexes are not readily formed in the embryo. Therefore, DMAP1 mediates distinct preimplantation epigenetic reprogramming processes: TIP60-p400 nucleosome remodeling and DNMT1 maintenance methylation.  相似文献   

4.
Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene   总被引:28,自引:0,他引:28  
Maintenance of genomic methylation patterns in mammalian somatic cells depends on DNA methyltransferase-1 (Dnmt1). Mouse oocytes and preimplantation embryos lack Dnmt1 but express a variant of this protein called Dnmt1o. We eliminated Dnmt1o by deletion of the oocyte-specific promoter and first exon from the Dnmt1 locus. Homozygous animals were normal, but most heterozygous fetuses of homozygous females died during the last third of gestation. Although genomic methylation patterns were established normally in Dnmt1o-deficient oocytes, embryos derived from such oocytes showed a loss of allele-specific expression and methylation at certain imprinted loci. Transient nuclear localization of Dnmt1o in 8-cell embryos suggests that this variant of Dnmt1 provides maintenance methyltransferase activity specifically at imprinted loci during the fourth embryonic S phase.  相似文献   

5.
6.
7.
Wei Y  Huan Y  Shi Y  Liu Z  Bou G  Luo Y  Zhang L  Yang C  Kong Q  Tian J  Xia P  Sun QY  Liu Z 《PloS one》2011,6(5):e20154
The low success rate of somatic cell nuclear transfer (SCNT) in mammalian cloning is largely due to imprinting problems. However, little is known about the mechanisms of reprogramming imprinted genes during SCNT. Parental origin-specific DNA methylation regulates the monoallelic expression of imprinted genes. In natural fertilization, methylation imprints are established in the parental germline and maintained throughout embryonic development. However, it is unclear whether methylation imprints are protected from global changes of DNA methylation in cloned preimplantation embryos. Here, we demonstrate that cloned porcine preimplantation embryos exhibit demethylation at differentially methylated regions (DMRs) of imprinted genes; in particular, demethylation occurs during the first two cell cycles. By RNAi-mediated knockdown, we found that Dnmt1 is required for the maintenance of methylation imprints in porcine preimplantation embryos. However, no clear signals were detected in the nuclei of oocytes and preimplantation embryos by immunofluorescence. Thus, Dnmt1 is present at very low levels in the nuclei of porcine oocytes and preimplantation embryos and maintains methylation imprints. We further showed that methylation imprints were rescued in nonenucleated metaphase II (MII) oocytes. Our results indicate that loss of Dnmt1 in the maternal nucleus during SCNT significantly contributes to the unfaithful maintenance of methylation imprints in cloned embryos.  相似文献   

8.
9.
Biallelic expression of Igf2 is frequently seen in cancers because Igf2 functions as a survival factor. In many tumors the activation of Igf2 expression has been correlated with de novo methylation of the imprinted region. We have compared the intrinsic susceptibilities of the imprinted region of Igf2 and H19, other imprinted genes, bulk genomic DNA, and repetitive retroviral sequences to Dnmt1 overexpression. At low Dnmt1 methyltransferase levels repetitive retroviral elements were methylated and silenced. The nonmethylated imprinted region of Igf2 and H19 was resistant to methylation at low Dnmt1 levels but became fully methylated when Dnmt1 was overexpressed from a bacterial artificial chromosome transgene. Methylation caused the activation of the silent Igf2 allele in wild-type and Dnmt1 knockout cells, leading to biallelic Igf2 expression. In contrast, the imprinted genes Igf2r, Peg3, Snrpn, and Grf1 were completely resistant to de novo methylation, even when Dnmt1 was overexpressed. Therefore, the intrinsic difference between the imprinted region of Igf2 and H19 and of other imprinted genes to postzygotic de novo methylation may be the molecular basis for the frequently observed de novo methylation and upregulation of Igf2 in neoplastic cells and tumors. Injection of Dnmt1-overexpressing embryonic stem cells in diploid or tetraploid blastocysts resulted in lethality of the embryo, which resembled embryonic lethality caused by Dnmt1 deficiency.  相似文献   

10.
Lsh is involved in de novo methylation of DNA   总被引:5,自引:0,他引:5  
Deletion of Lsh perturbs DNA methylation patterns in mice yet it is unknown whether Lsh plays a direct role in the methylation process. Two types of methylation pathways have been distinguished: maintenance methylation by Dnmt1 occurring at the replication fork, and de novo methylation established by the methyltransferases Dnmt3a and Dnmt3b. Using an episomal vector in Lsh-/- embryonic fibroblasts, we demonstrate that the acquisition of DNA methylation depends on the presence of Lsh. In contrast, maintenance of previously methylated episomes does not require Lsh, implying a functional role for Lsh in the establishment of novel methylation patterns. Lsh affects Dnmt3a as well as Dnmt3b directed methylation suggesting that Lsh can cooperate with both enzymatic activities. Furthermore, we demonstrate that embryonic stem cells with reduced Lsh protein levels show a decreased ability to silence retroviral vector or to methylate endogenous genes. Finally, we demonstrate that Lsh associates with Dnmt3a or Dnmt3b but not with Dnmt1 in embryonic cells. These results suggest that the epigenetic regulator, Lsh, is directly involved in the control of de novo methylation of DNA.  相似文献   

11.
12.
13.
It has been reported that DNA methyltransferase 1-deficient (Dnmt1-/-) embryonic stem (ES) cells are hypomethylated (20% CpG methylation) and die through apoptosis when induced to differentiate. Here, we show that Dnmt[3a-/-,3b-/-] ES cells with just 0.6% of their CpG dinucleotides behave differently: the majority of cells within the culture are partially or completely blocked in their ability to initiate differentiation, remaining viable while retaining the stem cell characteristics of alkaline phosphatase and Oct4 expression. Restoration of DNA methylation levels rescues these defects. Severely hypomethylated Dnmt[3a-/-,3b-/-] ES cells have increased histone acetylation levels, and those cells that can differentiate aberrantly express extraembryonic markers of differentiation. Dnmt[3a-/-,3b-/-] ES cells with >10% CpG methylation are able to terminally differentiate, whereas Dnmt1-/- ES cells with 20% of the CpG methylated cannot differentiate. This demonstrates that successful terminal differentiation is not dependent simply on adequate methylation levels. There is an absolute requirement that the methylation be delivered by the maintenance enzyme Dnmt1.  相似文献   

14.
15.
Recent studies have indicated that nuclear protein of 95 kDa (Np95) is essential for maintaining genomic methylation by recruiting DNA methyltransferase (Dnmt) 1 to hemi‐methylated sites. Here, we show that Np95 interacts more strongly with regulatory domains of the de novo methyltransferases Dnmt3a and Dnmt3b. To investigate possible functions, we developed an epigenetic silencing assay using fluorescent reporters in embryonic stem cells (ESCs). Interestingly, silencing of the cytomegalovirus promoter in ESCs preceded DNA methylation and was strictly dependent on the presence of either Np95, histone H3 methyltransferase G9a or Dnmt3a and Dnmt3b. Our results indicate a regulatory role for Np95, Dnmt3a and Dnmt3b in mediating epigenetic silencing through histone modification followed by DNA methylation.  相似文献   

16.
M Okano  S Xie    E Li 《Nucleic acids research》1998,26(11):2536-2540
We have shown previously that de novo methylation activities persist in mouse embryonic stem (ES) cells homozygous for a null mutation of Dnmt1 that encodes the major DNA cytosine methyltransferase. In this study, we have cloned a putative mammalian DNA methyltransferase gene, termed Dnmt2 , that is homologous to pmt1 of fission yeast. Different from pmt1 in which the catalytic Pro-Pro-Cys (PPC) motif is 'mutated' to Pro-Ser-Cys, Dnmt2 contains all the conserved methyltransferase motifs, thus likely encoding a functional cytosine methyltransferase. However, baculovirus-expressed Dnmt2 protein failed to methylate DNA in vitro . To investigate whether Dnmt2 functions as a DNA methyltransferase in vivo , we inactivated the Dnmt2 gene by targeted deletion of the putative catalytic PPC motif in ES cells. We showed that endogenous virus was fully methylated in Dnmt2 -deficient mutant ES cells. Furthermore, newly integrated retrovirus DNA was methylated de novo in infected mutant ES cells as efficiently as in wild-type cells. These results indicate that Dnmt2 is not essential for global de novo or maintenance methylation of DNA in ES cells.  相似文献   

17.
目的: 探讨小鼠胚胎干细胞(mouse embryonic stem cells, mESCs)向生殖细胞(Embryonic germ cells,EG)分化过程中5-杂氮-2'-脱氧胞苷(5-Aza-2'-deoxycytidine,5-Aza-dC) 对DNA甲基化转移酶Dnmt1和Dnmt3a及生殖细胞特征基因Mvh表达变化的DNA甲基化调控机制。方法:将mES细胞分化形成拟胚体(embryoid bodies, EBs) 作为向生殖细胞分化的启动步骤,采用不同浓度(0.05μmol/L,0.1μmol/L,0.5μmol/L,1μmol/L,3μmol/L)处理EBs,RT-PCR实时荧光定量RT-PCR和Western blot分别检测检测在5-Aza-dC处理前后Dnmt1和Dnmt3a在ES细胞和EBs中的表达,甲基化特异性PCR(MSP)检测原始生殖细胞分化特征基因Mvh启动子甲基化状态。结果: 5-Aza-dC的浓度在0.05 μmol/L~1 μmol/L之间时,EBs保持较高的存活率而EBs的形态明显发生了变化;5-Aza-dC 处理后, Dnmt1和Dnmt3a在EBs中mRNA表达量明显降低,其变化特点与WB结果相一致。MSP和测序结果显示, Mvh启动子区表现为部分甲基化,5-Aza-dC 处理后的4d EBs中Mvh CpG岛有4个CG位点发生突变,而mES细胞中未见突变。结论: EBs经5-Aza-dC处理后,Dnmt1和Dnmt3a的表达明显下调;同时,Mvh启动子发生部分甲基化,有可能启动了向生殖细胞的分化进程。  相似文献   

18.
In mammals, DNA methylation is crucial for embryonic development and germ cell differentiation. The DNA methylation patterns are created by de novo-type DNA methyltransferases (Dnmts) 3a and 3b. Dnmt3a is crucial for global methylation, including that of imprinted genes in germ cells. In eukaryotic nuclei, genomic DNA is packaged into multinucleosomes with linker histone H1, which binds to core nucleosomes, simultaneously making contacts in the linker DNA that separates adjacent nucleosomes. In the present study, we prepared oligonucleosomes from HeLa nuclei with or without linker histone H1 and used them as a substrate for Dnmt3a. Removal of histone H1 enhanced the DNA methylation activity. Furthermore, Dnmt3a preferentially methylated the linker between the two nucleosome core regions of reconstituted dinucleosomes, and the binding of histone H1 inhibited the DNA methylation activity of Dnmt3a towards the linker DNA. Since an identical amount of histone H1 did not inhibit the activity towards naked DNA, the inhibitory effect of histone H1 was not on the Dnmt3a catalytic activity but on its preferential location in the linker DNA of the dinucleosomes. The central globular domain and C-terminal tail of the histone H1 molecule were indispensable for inhibition of the DNA methylation activity of Dnmt3a. We propose that the binding and release of histone H1 from the linker portion of chromatin may regulate the local DNA methylation of the genome by Dnmt3a, which is expressed ubiquitously in somatic cells in vivo.  相似文献   

19.
DNA methyltransferase1o (Dnmt1o), which is specific to oocyte and preimplantation embryo, plays a role in maintaining DNA methylation in mammalian cells. Here, we investigated the methylation status of CpGs sites in the Dnmt1o 5′‐flanking region in germ cells at different stages of oogenesis or spermatogenesis. The methylation levels of the CpG sites at the 5′‐flanking regions were hypermethylated in growing oocytes of all follicular stages, while the oocytes in meiotic metaphase II (MII) were demethylated. The methylation pattern within the CpGs sites in the 5′‐flanking region, however, was dramatically changed during spermatogenesis. We observed that there was significant non‐CpG methylation both in MII oocytes and spermatocytes. Although a low methylation level in non‐CpG sites was observed in primary and secondary oocytes, the CpA site of position 25 and CpT site of position 29 within the no‐CpG region in the 5′‐flanking region of Dnmt1o was highly methylated in MII oocytes. During spermatogenesis, the low degree of methylation at CpG sites in spermatocytes increased to a higher degree in sperm, while the high ratio of methylation in non‐CpG sites in spermatocytes decreased. Together, germ cells showed inverted methylation patterns between CpG and non‐CpG sites in the Dnmt1o 5′‐upstream region, and the methylation pattern during oogenesis did not drastically change, remaining generally hypomethylated at the MII stage. Mol. Reprod. Dev. 80: 212–222, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号