首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trans-resveratrol (RES), naturally produced by many plants, has a structure similar to synthetic estrogen diethylstilbestrol, but any effect on bone growth has not yet been clarified. Pre-pubertal ovary-intact New Zealand white rabbits received daily oral administration of either vehicle (control) or RES (200 mg/kg) until growth plate fusion occurred. Bone growth and growth plate size were longitudinally monitored by X-ray imaging, while at the endpoint, bone length was assessed by a digital caliper. In addition, pubertal ovariectomized (OVX) rabbits were treated with vehicle, RES or estradiol cypionate (positive control) for 7 or 10 weeks and fetal rat metatarsal bones were cultured in vitro with RES (0.03 µM–50 µM) and followed for up to 19 days. In ovary-intact rabbits, sixteen-week treatment with RES increased tibiae and vertebrae bone growth and subsequently improved final length. In OVX rabbits, RES delayed fusion of the distal tibia, distal femur and proximal tibia epiphyses and femur length and vertebral bone growth increased when compared with controls. Histomorphometrical analysis showed that RES-treated OVX rabbits had a wider distal femur growth plate, enlarged resting zone, increased number/size of hypertrophic chondrocytes, increased height of the hypertrophic zone, and suppressed chondrocyte expression of VEGF and laminin. In cultured fetal rat metatarsal bones, RES stimulated growth at 0.3 µM while at higher concentrations (10 μM and 50 μM) growth was inhibited. We conclude that RES has the potential to improve longitudinal bone growth. The effect was associated with a delay of growth plate fusion resulting in increased final length. These effects were accompanied by a profound suppression of VEGF and laminin expression suggesting that impairment of growth plate vascularization might be an underlying mechanism.  相似文献   

2.
Previously we showed that CCN family member 2/connective tissue growth factor (CCN2) promotes the proliferation, differentiation, and maturation of growth cartilage cells in vitro. To elucidate the specific role and molecular mechanism of CCN2 in cartilage development in vivo, in the present study we generated transgenic mice overexpressing CCN2 and analyzed them with respect to cartilage and bone development. Transgenic mice were generated expressing a ccn2/lacZ fusion gene in cartilage under the control of the 6 kb-Col2a1-enhancer/promoter. Changes in cartilage and bone development were analyzed histologically and immunohistologically and also by micro CT. Primary chondrocytes as well as limb bud mesenchymal cells were cultured and analyzed for changes in expression of cartilage–related genes, and non-transgenic chondrocytes were treated in culture with recombinant CCN2. Newborn transgenic mice showed extended length of their long bones, increased content of proteoglycans and collagen II accumulation. Micro-CT analysis of transgenic bones indicated increases in bone thickness and mineral density. Chondrocyte proliferation was enhanced in the transgenic cartilage. In in vitro short-term cultures of transgenic chondrocytes, the expression of col2a1, aggrecan and ccn2 genes was substantially enhanced; and in long-term cultures the expression levels of these genes were further enhanced. Also, in vitro chondrogenesis was strongly enhanced. IGF-I and IGF-II mRNA levels were elevated in transgenic chondrocytes, and treatment of non-transgenic chondrocytes with recombinant CCN2 stimulated the expression of these mRNA. The addition of CCN2 to non-transgenic chondrocytes induced the phosphorylation of IGFR, and ccn2-overexpressing chondrocytes showed enhanced phosphorylation of IGFR. Our data indicates that the observed effects of CCN2 may be mediated in part by CCN2-induced overexpression of IGF-I and IGF-II. These findings indicate that CCN2-overexpression in transgenic mice accelerated the endochondral ossification processes, resulting in increased length of their long bones. Our results also indicate the possible involvement of locally enhanced IGF-I or IGF-II in this extended bone growth.  相似文献   

3.
Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC) patients causes benign cartilage tumors on the bone surface (exostoses) and within bones (enchondromas). To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the data are consistent with paracrine signaling from SHP2-deficient cells causing SHP2-sufficient cells to be incorporated into the lesions.  相似文献   

4.
One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo.  相似文献   

5.
6.
During embryogenesis, the expression of mammalian stanniocalcin (STC1) in the appendicular skeleton suggests its involvement in the regulation of longitudinal bone growth. Such a role is further supported by the presence of dwarfism in mice overexpressing STC1. Yet, the STC 1 inhibitory effect on growth may be related to both postnatal metabolic abnormalities and prenatal defective bone formation. In our study, we used an organ culture system to evaluate the effects of STC on growth plate chondrogenesis, which is the primary determinant of longitudinal bone growth. Fetal rat metatarsal bones were cultured in the presence of recombinant human STC (rhSTC). After 3 days, rhSTC suppressed metatarsal growth, growth plate chondrocyte proliferation and hypertrophy/differentiation, and extracellular matrix synthesis. In addition, rhSTC increased the number of apoptotic chondrocytes in the growth plate. In cultured chondrocytes, rhSTC increased phosphate uptake, reduced chondrocyte proliferation and matrix synthesis, and induced apoptosis. All these effects were reversed by culturing chondrocytes with rhSTC and phosphonoformic acid, an inhibitor of phosphate transport. The rhSTC-mediated inhibition of metatarsal growth and growth plate chondrocyte proliferation and hypertrophy/differentiation was abolished by culturing metatarsals with rhSTC and phosphonoformic acid. Taken together, our findings indicate that STC1 inhibits longitudinal bone growth directly at the growth plate. Such growth inhibition, likely mediated by an increased chondrocyte phosphate uptake, results from suppressed chondrocyte proliferation, hypertrophy/differentiation, and matrix synthesis and by increased apoptosis. Last, the expression of both STC1 and its binding site in the growth plate would support an autocrine/paracrine role for this growth factor in the regulation of growth plate chondrogenesis.  相似文献   

7.
Endochondral ossification begins from the condensation and differentiation of mesenchymal cells into cartilage. The cartilage then goes through a program of cell proliferation, hypertrophic differentiation, calcification, apoptosis, and eventually is replaced by bone. Unlike most cartilage, articular cartilage is arrested before terminal hypertrophic differentiation. In this study, we showed that TGF-beta/Smad3 signals inhibit terminal hypertrophic differentiation of chondrocyte and are essential for maintaining articular cartilage. Mutant mice homozygous for a targeted disruption of Smad3 exon 8 (Smad3(ex8/ex8)) developed degenerative joint disease resembling human osteoarthritis, as characterized by progressive loss of articular cartilage, formation of large osteophytes, decreased production of proteoglycans, and abnormally increased number of type X collagen-expressing chondrocytes in synovial joints. Enhanced terminal differentiation of epiphyseal growth plate chondrocytes was also observed in mutant mice shortly after weaning. In an in vitro embryonic metatarsal rudiment culture system, we found that TGF-beta1 significantly inhibits chondrocyte differentiation of wild-type metatarsal rudiments. However, this inhibition is diminished in metatarsal bones isolated from Smad3(ex8/ex8) mice. These data suggest that TGF-beta/Smad3 signals are essential for repressing articular chondrocyte differentiation. Without these inhibition signals, chondrocytes break quiescent state and undergo abnormal terminal differentiation, ultimately leading to osteoarthritis.  相似文献   

8.
9.
Proepithelin, a previously unrecognized growth factor in cartilage, has recently emerged as an important regulator for cartilage formation and function. In the present study, we provide several lines of evidences in proepithelin-mediated induction of cell proliferation, differentiation, and apoptosis in the metatarsal growth plate. Proepithelin-mediated stimulation of metatarsal growth and growth plate chondrogenesis was neutralized by pyrrolidine dithiocarbamate, a known NF-κB inhibitor. In rat growth plate chondrocytes, proepithelin induced NF-κB-p65 nuclear translocation, and nuclear NF-κB-p65 initiated its target gene cyclin D1 to regulate chondrocyte functions. The inhibition of NF-κB-p65 expression and activity (by p65 short interfering RNA (siRNA) and pyrrolidine dithiocarbamate, respectively) in chondrocytes reversed the proepithelin-mediated induction of cell proliferation and differentiation and the proepithelin-mediated prevention of cell apoptosis. Moreover, the inhibition of the phosphatidylinositol 3-kinase and Akt abolished the effects of proepithelin on NF-κB activation. Finally, using siRNA and antisense strategies, we demonstrated that endogenously produced proepithelin by chondrocytes is important for chondrocyte growth in serum-deprived conditions. These results support the hypothesis that the induction of NF-κB activity of in growth plate chondrocytes is critical in proepithelin-mediated growth plate chondrogenesis and longitudinal bone growth.  相似文献   

10.
Increased chondrocyte hypertrophy is often associated with cartilage joint degeneration in human osteoarthritis patients. Matrilin-3 knock-out (Matn3 KO) mice exhibit these features. However, the underlying mechanism is unknown. In this study, we sought a molecular explanation for increased chondrocyte hypertrophy in the mice prone to cartilage degeneration. We analyzed the effects of Matn3 on chondrocyte hypertrophy and bone morphogenetic protein (Bmp) signaling by quantifying the hypertrophic marker collagen type X (Col X) gene expression and Smad1 activity in Matn3 KO mice in vivo and in Matn3-overexpressing chondrocytes in vitro. The effect of Matn3 and its specific domains on BMP activity were quantified by Col X promoter activity containing the Bmp-responsive element. Binding of MATN3 with BMP-2 was determined by immunoprecipitation, solid phase binding, and surface plasmon resonance assays. In Matn3 KO mice, Smad1 activity was increased more in growth plate chondrocytes than in wild-type mice. Conversely, Matn3 overexpression in hypertrophic chondrocytes led to inhibition of Bmp-2-stimulated, BMP-responsive element-dependent Col X expression and Smad1 activity. MATN3 bound BMP-2 in a dose-dependent manner. Multiple epidermal growth factor (EGF)-like domains clustered together by the coiled coil of Matn3 is required for Smad1 inhibition. Hence, as a novel BMP-2-binding protein and antagonist in the cartilage extracellular matrix, MATN3 may have the inherent ability to inhibit premature chondrocyte hypertrophy by suppressing BMP-2/Smad1 activity.  相似文献   

11.
The bone is a metabolically active organ which undergoes repeated remodeling cycles of bone resorption and formation. In this study, we revealed a robust and extremely long-lasting circadian rhythm in ex vivo culture maintained for over six months from the femoral bone of a PERIOD2Luciferase mouse. Furthermore, we also identified robust circadian clocks in flat bones. High- or low-magnification real-time bioluminescence microscopic imaging revealed that the robust circadian rhythms emanated from the articular cartilage and the epiphyseal cartilage within the growth plate of juvenile animals. Stimulation by forskolin or dexamethasone treatment caused type 0 phase resetting, indicating canonical entraining properties of the bone clock. Together, our findings from long-term ex vivo culture revealed that “tissue-autonomous” circadian rhythm in the articular cartilage and the growth plate of femoral bone functions for several months even in an organ culture condition, and provided a useful in vitro assay system investigating the role of the biological clock in bone formation or development.  相似文献   

12.
TGF-β has been implicated in the proliferation and differentiation of chondrocytes and osteoblasts. However, the in vivo function of TGF-β in skeletal development is unclear. In this study, we investigated the role of TGF-β signaling in growth plate development by creating mice with a conditional knockout of the TGF-β type I receptor ALK5 (ALK5CKO) in skeletal progenitor cells using Dermo1-Cre mice. ALK5CKO mice had short and wide long bones, reduced bone collars, and trabecular bones. In ALK5CKO growth plates, chondrocytes proliferated and differentiated, but ectopic cartilaginous tissues protruded into the perichondrium. In normal growth plates, ALK5 protein was strongly expressed in perichondrial progenitor cells for osteoblasts, and in a thin chondrocyte layer located adjacent to the perichondrium in the peripheral cartilage. ALK5CKO growth plates had an abnormally thin perichondrial cell layer and reduced proliferation and differentiation of osteoblasts. These defects in the perichondrium likely caused the short bones and ectopic cartilaginous protrusions. Using tamoxifen-inducible Cre-ER™-mediated ALK5-deficient primary calvarial cell cultures, we found that TGF-β signaling promoted osteoprogenitor proliferation, early differentiation, and commitment to the osteoblastic lineage through the selective MAPKs and Smad2/3 pathways. These results demonstrate the important roles of TGF-β signaling in perichondrium formation and differentiation, as well as in growth plate integrity during skeletal development.  相似文献   

13.
Transforming growth factor β (Tgfb) signaling plays an important role in endochondral ossification. Previous studies of mice in which the Tgfb type II receptor gene (Tgfbr2) was deleted in the limb bud mesenchymal cells or differentiated chondrocytes showed defects in the development of the long bones or the axial skeleton, respectively. Here, we generated mouse embryos in which the Tgfbr2 gene was ablated in hypertrophic chondrocytes. These mice exhibited delays in both the hypertrophic conversion of proliferating chondrocytes and the subsequent terminal chondrocyte differentiation. The expression domains of Col10a1, Matrix metalloproteinase 13, and Osteopontin were small, and the expression of Vascular endothelial growth factor and Platelet endothelial cell adhesion molecule was downregulated. The calcification of the bone collar in the mutant mice was markedly delayed and the periosteum was thin, possibly because of the downregulation of Indian hedgehog expression. We conclude that Tgfb signaling in hypertrophic chondrocytes positively regulates terminal chondrocyte differentiation, angiogenesis in calcified cartilage, and osteogenesis in the bone collar, at least partly through Indian hedgehog signaling in vivo.  相似文献   

14.
15.
Smad4 is required for the normal organization of the cartilage growth plate   总被引:6,自引:0,他引:6  
Zhang J  Tan X  Li W  Wang Y  Wang J  Cheng X  Yang X 《Developmental biology》2005,284(2):311-322
Smad4 is the central intracellular mediator of transforming growth factor-beta (TGF-beta) signals. To study the role of Smad4 in skeletal development, we introduced a conditional mutation of the gene in chondrocytes using Cre--loxP system. We showed that Smad4 was expressed strongly in prehypertrophic and hypertrophic chondrocytes. The abrogation of Smad4 in chondrocytes resulted in dwarfism with a severely disorganized growth plate characterized by expanded resting zone of chondrocytes, reduced chondrocyte proliferation, accelerated hypertrophic differentiation, increased apoptosis and ectopic bone collars in perichondrium. Meanwhile, Smad4 mutant mice exhibited decreased expression of molecules in Indian hedgehog/parathyroid hormone-related protein (Ihh/PTHrP) signaling. The cultured mutant metatarsal bones failed to response to TGF-beta1, while the hypertrophic differentiation was largely inhibited by Sonic hedgehog (Shh). This indicated that Ihh/PTHrP inhibited the hypertrophic differentiation of chondrocytes independent of the Smad4-mediated TGF-beta signals. All these data provided the first genetic evidence demonstrating that Smad4-mediated TGF-beta signals inhibit the chondrocyte hypertrophic differentiation, and are required for maintaining the normal organization of chondrocytes in the growth plate.  相似文献   

16.

Background

Endochondral ossification, the process through which long bones are formed, involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. In a previous publication we showed that pharmacological inhibition of the PI3K signaling pathway results in reduced endochondral bone growth, and in particular, shortening of the hypertrophic zone in a tibia organ culture system. In this current study we aimed to investigate targets of the PI3K signaling pathway in hypertrophic chondrocytes.

Methodology/Principal Findings

Through the intersection of two different microarray analyses methods (classical single gene analysis and GSEA) and two different chondrocyte differentiation systems (primary chondrocytes treated with a pharmacological inhibitor of PI3K and microdissected growth plates), we were able to identify a high number of genes grouped in GSEA functional categories regulated by the PI3K signaling pathway. Genes such as Phlda2 and F13a1 were down-regulated upon PI3K inhibition and showed increased expression in the hypertrophic zone compared to the proliferative/resting zone of the growth plate. In contrast, other genes including Nr4a1 and Adamts5 were up-regulated upon PI3K inhibition and showed reduced expression in the hypertrophic zone. Regulation of these genes by PI3K signaling was confirmed by quantitative RT-PCR. We focused on F13a1 as an interesting target because of its known role in chondrocyte hypertrophy and osteoarthritis. Mouse E15.5 tibiae cultured with LY294002 (PI3K inhibitor) for 6 days showed decreased expression of factor XIIIa in the hypertrophic zone compared to control cultures.

Conclusions/Significance

Discovering targets of signaling pathways in hypertrophic chondrocytes could lead to targeted therapy in osteoarthritis and a better understanding of the cartilage environment for tissue engineering.  相似文献   

17.
Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.  相似文献   

18.
Endochondral bone formation is characterized by the progressive replacement of a cartilage anlagen by bone at the growth plate with a tight balance between the rates of chondrocyte proliferation, differentiation, and cell death. Deficiency of matrix metalloproteinase-9 (MMP-9) leads to an accumulation of late hypertrophic chondrocytes. We found that galectin-3, an in vitro substrate of MMP-9, accumulates in the late hypertrophic chondrocytes and their surrounding extracellular matrix in the expanded hypertrophic cartilage zone. Treatment of wild-type embryonic metatarsals in culture with full-length galectin-3, but not galectin-3 cleaved by MMP-9, mimicked the embryonic phenotype of Mmp-9 null mice, with an increased hypertrophic zone and decreased osteoclast recruitment. These results indicate that extracellular galectin-3 could be an endogenous substrate of MMP-9 that acts downstream to regulate hypertrophic chondrocyte death and osteoclast recruitment during endochondral bone formation. Thus, the disruption of growth plate homeostasis in Mmp-9 null mice links galectin-3 and MMP-9 in the regulation of the clearance of late chondrocytes through regulation of their terminal differentiation.  相似文献   

19.
We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.  相似文献   

20.
Post-traumatic overgrowth of growing long bones is a common clinical phenomenon in paediatric traumatology and is the result of an enhanced stimulation of the nearby growth plate after fracture. To date, the exact post-fractural reactions of the growth plate are poorly understood. The aim of this study has been to determine the impact of fracture on the frequency of chondrocyte apoptosis of the growth plate. Rats sustained a mid-diaphyseal closed fracture of the left tibia or were left untreated. All animals were killed 3, 10, 14 or 29 days after trauma. The left and right tibiae were harvested and apoptotic chondrocytes of the proximal tibial growth plate were detected by TUNEL staining. The apoptosis percentage of physeal chondrocytes was statistically compared among fractured bones, intact contra-lateral bones and control bones. The physeal apoptosis rate of the fractured bone was significantly higher than that of the contra-lateral intact bone (valid for all evaluated days) and the control bone (valid from day 10 onwards). Contra-lateral intact tibiae never showed significantly higher apoptosis rates compared with control tibiae. Thus, mid-diaphyseal fracture influences the nearby growth plate by stimulating chondrocyte programmed cell death, which is associated with cartilage resorption and bone replacement. The lack of a significant difference between the intact contra-lateral and the intact control bone suggests that fracture only has a local effect that contributes to the greater apoptosis rate of the adjacent physis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号