首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
该文探讨了铜对线粒体内铁硫蛋白的毒性机理。通过包装慢病毒将Hep G2细胞中铜转运蛋白ATP7B(ATPase copper transporting beta)基因敲低,并用铜离子处理构建高铜细胞模型。通过免疫印迹、胶内酶活、紫外–可见光分光光度法检测细胞线粒体内铁硫蛋白、非铁硫蛋白及铁硫簇组装蛋白量和活性的改变;用电镜观察高铜模型中线粒体的形态改变;用海马能量代谢分析仪检测铜离子对细胞能量代谢的影响。结果发现,高铜细胞模型线粒体内铁硫簇组装蛋白ISCA2(ironsulfur cluster assembly 2)及ISCU(iron-sulfur cluster assembly enzyme)水平下降,抑制了铁硫簇的组装,并进一步影响了线粒体内[2Fe-2S]型及[4Fe-4S]型铁硫蛋白功能,但并不影响非铁硫蛋白。高铜状态也影响了呼吸链复合体活性及线粒体能量代谢,并导致线粒体形态发生改变。这些结果表明,异常累积的铜离子也会通过抑制线粒体中铁硫簇的组装,影响线粒体内铁硫蛋白的功能。  相似文献   

2.
目的:高热量物质的过度摄入是导致机体代谢紊乱,诱发2型糖尿病等代谢性疾病的主要原因,本文通过比较高果糖、高脂及高果糖高脂混合喂饲对小鼠体内能量代谢的影响,探索饮食诱发代谢紊乱性疾病的可能发病机制。方法:采用20%高果糖水,60%高脂饲料,及二者混合方式饲养C57BL/6小鼠3个月后,观察各组小鼠24小时内氧气消耗量,二氧化碳生成量,呼吸商及能量消耗的改变。结果:不同饮食喂饲3个月,与对照组小鼠相比,高果糖组、高脂组、及高果糖高脂组小鼠均表现出明显的肝内脂质蓄积,氧气消耗量增加,呼吸商下降,能量消耗增加。结论:过剩的高热量物质摄入导致机体内物质代谢、能量代谢发生改变,糖代谢受损,脂代谢增强,能量代谢方式从糖氧化为主转变为脂氧化供能。  相似文献   

3.
"免疫细胞的代谢及其调节"是近年发展而成的一个新研究领域。大量实验研究证实,免疫应答通常伴随某些免疫细胞在短时间内大量增殖、激活,而活化的免疫细胞(如T细胞/B细胞及其功能亚群、不同类型的固有免疫细胞等)有赖于改变其能量代谢方式而分化、扩增及发挥功能。因此,通过调控免疫细胞的能量代谢方式,可影响免疫应答的产生、效应及转归,并干预某些免疫病理过程的发生和发展。主要介绍不同T细胞亚群、B细胞和固有免疫细胞(如i NKT细胞等)的能量代谢及其调节,以及调控能量代谢对免疫细胞(尤其是T细胞)分化、功能的影响及其机制。  相似文献   

4.
目的:探讨大麻素1型受体(CB1)抑制剂利莫那班对下丘脑外侧区(LHA)微量注射orexin-A诱导的小鼠能量代谢及相关行为变化改变的影响。方法:通过侧脑室微量注射(icv)利莫那班,同时LHA微量注射orexin-A,测量小鼠能量代谢、自主运动的变化,杏仁核(CeA)内多巴胺释放能力以及小鼠摄食量的变化。结果:侧脑室微量注射利莫那班可减弱因LHA微量注射orexin-A引起的小鼠能量代谢变化,降低小鼠自主运动,并且减弱小鼠CeA内多巴胺释放能力。注射(icv)利莫那班未改变LHA微量注射orexin-A所诱导的摄食量增多。此外,LHA双侧注射利莫那班可阻断LHA内注射orexin-A对运动活性的促进作用,但不影响小鼠的摄食量。结论:大麻素受体涉及orexin-A诱导的小鼠中脑边缘系统多巴胺系统活化的调控,对能量代谢及自主运动也有影响,但对食物摄入的调节无明显影响。  相似文献   

5.
该文探讨了ISCA2蛋白低表达对细胞内铁硫蛋白和能量代谢的影响。在HeLa细胞内将ISCA2基因敲低,通过免疫印迹、顺乌头酸酶胶内酶活性分析法分析线粒体内外铁硫蛋白水平和活性改变;用紫外–可见分光光度法检测细胞线粒体内氧化磷酸化复合体活性;用海马能量分析仪分析细胞内能量代谢的改变。结果表明,ISCA2蛋白低表达后,氧化磷酸化复合体中各铁硫蛋白亚基都出现不同程度的下调,且对于线粒体[4Fe-4S]型铁硫蛋白亚基影响显著,但对线粒体[2Fe-2S]型铁硫蛋白亚基以及胞质[4Fe-4S]型铁硫蛋白亚基影响较小。同时,ISCA2蛋白低表达后对线粒体复合体活性和线粒体能量代谢影响显著,细胞有氧呼吸降低,细胞外乳酸含量增加。这些结果表明,ISCA2蛋白低表达后抑制铁硫簇的组装,导致铁硫蛋白功能障碍,影响线粒体复合体活性和氧化磷酸化系统,使得细胞能量代谢紊乱。  相似文献   

6.
目的:观察糖尿病时红细胞的粘附,探讨红细胞粘附对糖尿病微血管病变的影响。方法:STZ诱发大鼠糖尿病,FITC体外标记糖尿病红细胞后输给正常大鼠,荧光显微镜观察怕糖尿病红细胞在正常大鼠软脑膜微血管中的流动;透射电镜观察糖尿病大鼠脑皮质微血管内红细胞的超微结构。结构:与正常红细胞相比,FITC标记的糖尿病红细胞在血液正常的大鼠脑微血管中可以较长时间停留在内皮细胞表面,不被血流冲走,提示红细胞对微血管内  相似文献   

7.
越来越多的研究结果表明,肠道菌群与宿主消化、呼吸、内分泌、心血管、神经等系统发生的疾病密切相关。目前,全世界患肥胖和Ⅱ型糖尿病的人逐渐增多。肠道菌群的平衡有利于维持宿主正常的能量代谢过程,而肠道菌群失调使机体产生慢性炎症反应及胰岛素抵抗,从而导致肥胖和Ⅱ型糖尿病等代谢性疾病的发生。本文综述了肠道菌群影响肥胖的机制,以及通过调控肠道菌群改善肥胖的方法。  相似文献   

8.
糖尿病已经成为严重威胁人类健康的疾病之一。目前已有研究证明肠道菌群在糖尿病的发生、发展中发挥着重要作用。肠道菌群在人体中处于动态平衡,但容易受到饮食、环境、细菌的相互作用以及抗菌药物等多种因素的影响。肠道菌群的变化可以导致肥胖、胰岛素抵抗、肠道渗透压改变以及代谢性内毒素血症等,从而促进糖尿病(1型及2型)的发生、发展,而益生菌在预防糖尿病的发生和改善糖尿病预后中的作用不可小视。本文从糖代谢、脂代谢、免疫及并发症等方面分析肠道菌群影响糖尿病发生发展的机制。  相似文献   

9.
线粒体是人体内的能量代谢工厂,而脑是人体内能量代谢最活跃的部位。神经元和胶质细胞是脑内主要的细胞。本文对线粒体在能量产生的作用进行综述,同时比较神经元和星形胶质细胞能量代谢的异同及密切联系,并对神经退行性变中能量代谢障碍与线粒体可塑性改变进行了回顾。以三种神经退行性疾病帕金森、阿尔兹海默和脊髓侧索硬化症为例说明线粒体在神经系统疾病和脑能量代谢之间的重要作用。从而进一步系统的认识,脑内的线粒体在生理和病理状态下对能量代谢的影响。深入了解其机制,为研究神经系统退行性疾病提供新的治疗策略。  相似文献   

10.
运动中脂质过氧化物对人体红细胞膜结构和功能的影响   总被引:16,自引:1,他引:15  
运动对红细胞某些特性的影响非常明显,其作用涉及到红细胞膜、代谢酶类和血红蛋白。先前的研究表明,运动中红细胞的破坏增多是引发运动性贫血的重要原因,但这些改变最终都归结于损伤红细胞膜的结构和功能,造成膜机械脆性和渗透性的增加,红细胞变形性降低,使其易于被破坏或被网状内皮系统所清除,从而导致运动性贫血的发生。 近来,愈来愈多的研究观察表明,氧自由基(OFR)引发的膜脂质过氧化反应是导致膜的液态性、流动性以及通透性改变,造成膜功能障碍。这为我们探索运动加速红细胞破坏、缩短红细胞寿命的机  相似文献   

11.
Lipid peroxidation in blood plasma and red blood cells was shown to have minor effects on the state of the erythrocyte membranes in rats with alloxan diabetes. Administration of α-lipoic acid to rats with alloxan diabetes affected the metabolism of the animals and induced significant changes in erythrocyte morphology, as demonstrated by atomic-force microscopy.  相似文献   

12.
Activities of hexokinase and glucose-6-phosphate dehydrogenase have been measured in red blood cells from control, diabetic and insulin treated rats. After an initial decrease, the enzyme activities increased, but remained lower than control levels. A reversal of the diabetes effect was seen with insulin administration. Insulin induced hypoglycemia increased both enzymes. An overall control of glucose metabolism by insulin in red blood cells was observed.  相似文献   

13.
Factors involved in cell adhesion to vascular endothelium   总被引:1,自引:0,他引:1  
The adhesion of blood cells to endothelium can be studied in vitro using human endothelial cells in culture. This experimental model and radiometric techniques provide us with a simple system to quantify the adhesion of blood cells to endothelium. Normal human granulocytes isolated by density gradient adhere to normal endothelial cells in a proportion of 25%. Human promyelocytic cells (HL 60) induced by retinoic acid into mature cells adhere as well as normal granulocytes while the noninduced adhere poorly to endothelium. A small percentage of normal red cells attach to endothelial cells while red cells from patients with sickle cell anemia or diabetes mellitus have a significantly increased adhesion to endothelial cells (P greater than 0.001). This adhesion is statistically correlated with the extent and severity of vascular complications in diabetes mellitus (P less than 0.05). The addition of fibrinogen significantly increased (P less than 0.01) the adhesion of normal red cells, red cells from patients with sickle cell anemia or diabetes mellitus while gamma-globulins did not modify adhesion. Fibronectin potentiated the adhesion of normal red cells.  相似文献   

14.
Until now pyruvate kinase enzymopathies have been described only for red blood cells. On the basis of these results special structural properties of the erythrocyte PK was assumed, which are not yet totally established. PK defects may cause a nonspherocytic hemolytic anemia. This enzymopathy is characterized by a polymorphism, which is expressed in more than 5 different pathological variants. Up to now 16 cases of PK deficiency have ben diagnozed in the GDR. The following parameters are used for the characterization of the PK: the PEP-dependance, the inhibition by ATP and alanine, the specificity to nucleotides, the stability to temperature and urea and the maturation dependence. Two pathological variants of the PK with a decreased PEP-affinity are described. Furthermore the differences in the energy metabolism of the red blood cells of these two patients under aerobic and anaerobic conditions are discussed.  相似文献   

15.
Prenatal diagnosis of inborn errors of metabolism has been possible only if the enzyme affected is expressed in amniotic fluid cells grown in culture. Arginase is essentially undetectable in normal human fibroblasts, amniotic fluid, and amniotic fluid cells but is present in high amounts in red blood cells. It is absent in the red blood cells of patients with liver arginase deficiency. The properties of the enzyme in the red cells of healthy children and adults were compared to those of the enzyme obtained from cord blood red cells of 13--20-week fetuses obtained at hysterotomy. The activities, heavy metal requirements, heat stability, pH optimum, kinetic properties, and reaction with anti-arginase antibody were examined. Both enzyme species were either identical or substantially similar by all criteria. The adult and fetal enzymes are, therefore, probably determined by the same structural gene. Fetal red cells obtained during amniocentesis and amnioscopy should then be a suitable tissue to use to make the prenatal diagnosis of arginase deficiency.  相似文献   

16.
Mechanics of Rouleau formation.   总被引:3,自引:2,他引:1       下载免费PDF全文
The formation of rouleau of red blood cells is considered from the standpoint of adhesion theory. With the use of the elastic properties of the red blood cell membrane obtained from previous work, the strain energy of the red blood cell in rouleau formation has been computed. The surface energy of adhesion for the bonding of two red blood cells is then computed from the variation of this strain energy. Computed cell shapes agree well with experiments.  相似文献   

17.
Summary Glucose metabolism has been studied in Salmo trutta red blood cells. From non-metabolizable analogue (3-O-methyl glucose and l-glucose) uptake experiments it is concluded that there is no counterpart to the membrane transport system for glucose found in mammalian red blood cells. Once within the cells, glucose is directed to CO2 and lactate formation through both the Embden-Meyerhoff and hexose monophosphate shunts; lactate appears as the most important endproduct of glucose metabolism in these cells. From experiments under anaerobic conditions, and in the presence of an inhibitor of pyruvate transfer to mitochondria, most of the CO2 formed appears to derive from the hexose monophosphate pathway. Appreciable O2 consumption has been detected, but there is no clear relationship between this and substrate metabolism. Key enzymes of glucose metabolism hexokinase, fructose-6-phosphate kinase and, probably, pyruvate kinase are out of equilibrium, confirming their regulatory activity in Salmo trutta red blood cells. The presence of isoproterenol, a catecholamine analogue, induces important changes in glucose metabolism under both aerobic and anaerobic conditions, and increases the production of both CO2 and lactate. From the data presented, glucose appears to be the major fuel for Salmo trutta red blood cells, showing a slightly different pattern of glucose metabolism from rainbow trout red blood cells.Abbreviations EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - GOT glutamate oxalacetate transaminase - GPI glucose phosphate isomerase - HK hexokinase - HMS hexose monophosphate shunt - IP isoproterenol - LDH lactate dehydrogenase - MCB modified Cortland buffer - OMG 3-O-methyl glucose - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - TAC tricarboxylic acid cycle  相似文献   

18.
The pathogenesis of diabetes is to be further investigated. Vitamin D3 (VitD3) can improve diabetes. Micro RNAs (miR) are involved in regulating cell activities. This study tests a hypothesis that miR‐550a interferes with the metabolism of VitD3 in peripheral B cells. In this study, blood samples were collected from patients with diabetes and healthy persons. The B cells were isolated from the blood samples to be treated with tumor necrosis factor (TNF)‐α. The B cells were then collected and analyzed for the expression of miR‐550a and cyp27b1. The results showed that B cells from healthy subjects were capable of converting VitD metabolite calcidiol to calcitriol, which was impaired in B cells collected from diabetic patients. The diabetic patients showed lower bone mineral density than that in healthy subject. The miR‐550a was negatively correlated with bone mineral density and the Levels of cyp27b1 in peripheral B cells of patients with diabetes. In vitro study showed that TNF‐α increased miR‐550a expression and inhibited the expression of cyp27b1 in B cells. miR‐550a mediated the effects of TNF‐α on inducing chromatin remodeling at the cyp27b1 gene locus. In conclusion, miR‐550a mediates the TNF‐α‐induced suppression of cyp27b1 expression in peripheral B cells of patients with diabetes, which can be blocked by inhibition of miR‐550a.  相似文献   

19.
Phenylalanine or tryptophan was incorporated into AA and SS red blood cells by a liposomal transport system which was previously shown by Kumpati to inhibit and reverse sickling of intact SS red blood cells in vitro. In the present study, the effect of phenylalanine or tryptophan incorporation on the rheological properties was evaluated. The incorporation of phenylalanine or tryptophan into red blood cells decreased the viscosity of deoxy SS red blood cells which reached a level close to that for normal red blood cells due to the antisickling effect. These results demonstrate that this liposomal transport system which transferred phenylalanine or tryptophan into intact red cells and did not have any adverse effect on red cell metabolism or function did correct the viscosity of deoxy SS red cells by its antisickling effect. This method may have significant therapeutic implications in the treatment of sickle cell disease.  相似文献   

20.
Numerous studies on perinatal long-chain polyunsaturated fatty acid nutrition have clarified the influence of dietary docosahexaenoic acid (DHA) and arachidonic acid (ARA) on central nervous system PUFA concentrations. In humans, omnivorous primates, and piglets, DHA and ARA plasma and red blood cells concentrations rise with dietary preformed DHA and ARA. Brain and retina DHA are responsive to diet while ARA is not. DHA is at highest concentration in cells and tissues associated with high energy consumption, consistent with high DHA levels in mitochondria and synaptosomes. DHA is a substrate for docosanoids, signaling compounds of intense current interest. The high concentration in tissues with high rates of oxidative metabolism may be explained by a critical role related to oxidative metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号