首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
庞大的瘤胃微生物群系之间存在着共生关系,影响着宿主的代谢,是反刍动物营养学的研究热点之一.通过基于16S rRNA的分子生物学方法,如探针法、实时定量PCR法、DGGE/TGGE,RAPD和RFLP技术等研究瘤胃微生物多样性及组成结构,应用宏基因组学如建立YAC文库、BAC文库等研究方法对瘤胃微生物功能特征进行更深入的研究,实现改善反刍动物乳、肉产品品质的目的.  相似文献   

2.
反刍动物瘤胃中产甲烷菌可以利用氢气、甲醇和甲胺等物质生成甲烷,不仅造成饲料能量的浪费,同时甲烷作为一种主要的温室气体也对环境构成了严重的威胁。因此,众多学者都在寻找降低反刍动物甲烷排放的方法,其中有学者提出在饲粮中添加适量可直接饲喂的微生物(Direct-fed microbes,DFM)是一种很有潜力的方法,但目前还处于初步探索阶段。本文综述了几种重要的DFM,并介绍了其作用机制及应用效果。  相似文献   

3.
瘤胃纤毛虫是反刍动物瘤胃微生物的重要组成部分,在维持瘤胃微生态和对宿主动物供能等方面起重要作用。本研究采集5头中国荷斯坦牛(Bos taurus)瘤胃液样品固定染色,而后通过光学显微镜计数瘤胃纤毛虫的密度和属的组成及组成比,并对其中常见属进行观察和特征描述,旨在了解中国荷斯坦牛瘤胃纤毛虫的物种多样性,为反刍动物的瘤胃内纤毛虫生物多样性研究提供资料。结果发现,中国荷斯坦牛瘤胃纤毛虫在瘤胃液中的平均密度为(3.2±3.4)×10^(8)个/L,共检出13属瘤胃纤毛虫,其中检出率最高的3个属依次为内毛属(Entodinium)、单甲属(Eremoplastron)和双毛属(Diplodinium),检出率最低的3个属依次为鞘甲属(Elytroplastron)、后毛属(Metadinium)和多甲属(Polyplastron)。内毛属是中国荷斯坦牛瘤胃液中最主要的属,其平均组成比为84.0%±10.2%,而其他属的组成比都低于5%。本研究表明,中国荷斯坦牛瘤胃液中瘤胃纤毛虫具有丰富的物种多样性。  相似文献   

4.
瘤胃微生物与宿主间存在互作关系,宿主动物遗传信息影响瘤胃微生物,而瘤胃微生物变化也同样受到日粮原料、营养水平以及外源添加物质的调控。近年来,通过多组学技术分析瘤胃微生物与宿主关系及其内在机制已成为研究热点。综述了瘤胃微生物与宿主关系及受日粮调控作用研究进展,具体介绍了瘤胃微生物与宿主基因组关系,瘤胃微生物与动物生产性能关系,以及在日粮配置、益生菌益生元和植物次生代谢物添加等条件下对瘤胃微生物的影响;并对瘤胃微生物研究的发展趋势和应用前景进行了展望。  相似文献   

5.
瘤胃甲烷菌及甲烷生成的调控   总被引:18,自引:0,他引:18  
甲烷菌属于古细菌 ,参与有机物的厌氧降解 ,生成甲烷。反刍动物瘤胃内甲烷的生成损耗 2 %~ 12 %的饲料能量 ,并且通过嗳气排入大气。甲烷不仅是温室气体之一 ,而且还会破坏大气臭氧层。每年全球反刍动物排放大量的甲烷 ,减少瘤胃内甲烷的生成对提高饲料能量利用率和改善环境具有重要意义。近年来 ,有关瘤胃甲烷菌及甲烷生成调控的报道日益增多。概述甲烷菌的特性以及瘤胃内甲烷生成的途径 ,综述甲烷生成的调控手段 ,主要包括去原虫、日粮配合、添加电子受体、增加乙酸生成菌等方法  相似文献   

6.
瘤胃甲烷调控方法评述   总被引:2,自引:0,他引:2  
反刍动物释放的甲烷不仅消耗6%~10%的能量摄入,而且是重要的温室效应气体。过去20多年以来,研究人员围绕瘤胃甲烷生成及其调控展开了大量的研究,目前采取的主要措施包括:(1)提供电子释放新途径;(2)利用疫苗、生物控制剂(噬菌体和细菌素)以及化学抑制剂等抑制产甲烷菌,以及(3)去原虫、添加植物提取物或有机酸等促进产乙酸菌增加,降低产甲烷菌可利用的氢。瘤胃生态系统是一个复杂的生态系统,能够将复杂碳水化合物转化成为挥发性脂肪酸,这个过程部分依赖于甲烷的生成和氢的消耗。因此,虽然各种调控措施能够在短期内抑制甲烷生成,但瘤胃微生态系统能够恢复原有的甲烷生成水平,这表明我们对瘤胃中氢代谢仍然认识不足。进一步提高对瘤胃内氢和甲烷生成的微生物生化机制的了解,有助于我们找到有效的甲烷调控措施。  相似文献   

7.
瘤胃微生物甲烷生成的机理与调控   总被引:7,自引:0,他引:7  
反刍动物瘤胃微生物产生的甲烷不但造成自身能量的大量损失,而且在地球温室效应中起着不可忽视的作用。在阐述了瘤胃中甲烷产生机理的基础上,详细论述了甲烷生成调控的各种途径、特点及其应用现状。  相似文献   

8.
微生物在自然界中广泛存在,除土壤和水中的微生物最多外,其次在农业畜牧业中反刍动物的瘤胃微生态系统中的微生物中所占比例最多。反刍动物瘤胃微生物由于种类繁多,数量巨大,微生物区系之间关系非常复杂,它们之间寄生共生,共同影响宿主的生长发育和机体代谢,所以是反刍动物营养学研究的热点之一。随着分子生物学技术的发展,宏基因组学技术帮助我们揭开了瘤胃微生物群落的真实面貌,有助于挖掘瘤胃微生物基因库并筛选其中的功能基因,使人们对反刍动物瘤胃微生物群落的研究更加方便、透彻。本文综述了近些年应用宏基因组学技术在反刍动物瘤胃微生态群落系统的应用,旨在对瘤胃微生物功能特征进行更深入的研究,为畜牧科学生产及微生物发酵等相关领域的研究提供科学指导。  相似文献   

9.
现代分子生物学技术在瘤胃微生态系统研究中的应用   总被引:4,自引:0,他引:4  
瘤胃中栖息着大量的微生物,由于这些微生物组成复杂且有些细菌在体外无法培养,目前对这些微生物的了解仍然很少。现代分子生物学技术的发展为研究瘤胃微生物提供了有效的方法,利用核酸探针、基因序列分析、遗传指纹技术、全细胞杂交和实时定量PCR等技术可以对瘤胃微生物的分类及进化关系、区系结构图、重要酶的表达以及目的微生物的准确定量进行更为深入和透彻的研究。发展和利用这些技术不仅可以研究微生物之间的关系以及微生物与饲料颗粒之间时间与空间的关系,还能直接在细菌自然生长的环境中对其各种特征进行研究。  相似文献   

10.
当前在全球气候变化和人类活动双重作用下,湿地正在或者将要面临着显著的盐分变化形势,尤其是内陆和滨海咸化湿地。湿地是大气甲烷的重要排放源。甲烷排放是甲烷产生、氧化和传输过程综合作用的结果。盐分变化将影响湿地水-土环境,降低植物群落初级生产力和有机物积累速率,改变微生物主导的有机物矿化速率和途径等,进而改变湿地生态系统的结构和功能,影响湿地甲烷产生、氧化、传输和排放系列过程。本文综述了盐分(浓度与组成)对湿地甲烷产生与排放的影响结果,从底物供给、微生物(产甲烷菌和甲烷氧化菌等)数量、活性与群落组成、酶活性、植物、电子受体、p H和氧化还原电位等几个关键方面分析了盐分影响湿地甲烷排放过程的内在机制。在此基础上提出了今后需重点关注的5个方面:1)加强盐分浓度与组成对湿地甲烷产生、氧化、传输与排放影响的系统性、框架性研究;2)深入探讨盐分背景、变化幅度与速率的耦合如何影响湿地甲烷系列过程;3)不同离子组成及其交互效应如何影响湿地甲烷动态过程;4)结合生物学、基因组学及同位素技术等,加强湿地产甲烷菌与甲烷氧化菌与盐分的关系及其响应研究;5)湿地甲烷对盐分变化响应的时空分异规律。  相似文献   

11.
In ruminants, high fermentation capacity is necessary to develop more efficient ruminant production systems. Greater level of production depends on the ability of the microbial ecosystem to convert organic matter into precursors of milk and meat. This has led to increased interest by animal nutritionists, biochemists and microbiologists in evaluating different strategies to manipulate the rumen biota to improve animal performance, production efficiency and animal health. One of such strategies is the use of natural feed additives such as single-celled fungi yeast. The main objectives of using yeasts as natural additives in ruminant diets include; (i) to prevent rumen microflora disorders, (ii) to improve and sustain higher production of milk and meat, (iii) to reduce rumen acidosis and bloat which adversely affect animal health and performance, (iv) to decrease the risk of ruminant-associated human pathogens and (v) to reduce the excretion of nitrogenous-based compounds, carbon dioxide and methane. Yeast, a natural feed additive, has the potential to enhance feed degradation by increasing the concentration of volatile fatty acids during fermentation processes. In addition, microbial growth in the rumen is enhanced in the presence of yeast leading to the delivery of a greater amount of microbial protein to the duodenum and high nitrogen retention. Single-celled fungi yeast has demonstrated its ability to increase fibre digestibility and lower faecal output of organic matter due to improved digestion of organic matter, which subsequently improves animal productivity. Yeast also has the ability to alter the fermentation process in the rumen in a way that reduces methane formation. Furthermore, yeast inclusion in ruminant diets has been reported to decrease toxins absorption such as mycotoxins and promote epithelial cell integrity. This review article provides information on the impact of single-celled fungi yeast as a feed supplement on ruminal microbiota and its function to improve the health and productive longevity of ruminants.  相似文献   

12.
Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome.  相似文献   

13.
Lowering dietary protein concentration is known to decrease urinary nitrogen (N) losses and increase milk N efficiency in dairy cows, but it may negatively affect animal productivity. Plant-derived essential oils (EO) may alleviate these negative effects by improving the efficiency of rumen fermentation in cows fed reduced feed protein diets. The experiment was conducted to investigate the effects of lowering crude protein (CP) supply alone or in a combination with an EO product on feed intake, milk production and composition, rumen fermentation, total tract digestibility and N utilization in dairy cows. Twenty-one Holstein cows were used in a replicated 3 × 3 Latin square design experiment. Each period consisted of 14 days for adaptation and 14 days for data collection and sampling. Cows were randomly assigned to one of three experimental diets: a 165 g/kg CP diet (control), a 155 g/kg CP diet (LCP) and LCP supplemented with 35 g/day per cow EO (LCPEO). The dry matter (DM) intake was decreased by LCP and LCPEO compared with the control; there was no effect of EO on DM intake. Milk yield and composition and feed efficiency were similar among treatments. Ruminal pH, lactate, ammonia and volatile fatty acids concentrations were not affected by treatment, except increased valerate concentration by LCPEO compared with LCP. The supplementation of EO tended to decrease protozoal counts. The LCP and LCPEO increased total tract digestibility of DM and organic matter and decreased CP digestibility compared with the control. Supplementation with EO did not affect total tract digestibility of dietary nutrients compared with the control or LCP. The LCP and LCPEO decreased urinary and fecal N excretions and increased milk N efficiency; nitrogen losses were not affected by EO. In this study, lowering dietary CP by 10 g/kg decreased urinary and fecal N excretion without affecting productivity. The supplementation of EO to LCP had only minor effects on rumen fermentation and did not affect productivity, digestibility and N excretion in lactating dairy cows.  相似文献   

14.
15.
The evaluation of how the gut microbiota affects both methane emissions and animal production is necessary in order to achieve methane mitigation without production losses. Toward this goal, the aim of this study was to correlate the rumen microbial communities (bacteria, archaea, and fungi) of high (HP), medium (MP), and low milk producing (LP), as well as dry (DC), Holstein dairy cows in an actual tropical production system with methane emissions and animal production traits. Overall, DC cows emitted more methane, followed by MP, HP and LP cows, although HP and LP cow emissions were similar. Using next-generation sequencing, it was found that bacteria affiliated with Christensenellaceae, Mogibacteriaceae, S24-7, Butyrivibrio, Schwartzia, and Treponema were negatively correlated with methane emissions and showed positive correlations with digestible dry matter intake (dDMI) and digestible organic matter intake (dOMI). Similar findings were observed for archaea in the genus Methanosphaera. The bacterial groups Coriobacteriaceae, RFP12, and Clostridium were negatively correlated with methane, but did not correlate with dDMI and dOMI. For anaerobic fungal communities, no significant correlations with methane or animal production traits were found. Based on these findings, it is suggested that manipulation of the abundances of these microbial taxa may be useful for modulating methane emissions without negatively affecting animal production.  相似文献   

16.
In response to the increased concern over agriculture’s contribution to greenhouse gas (GHG) emissions, more detailed assessments of current methane emissions and their variation, within and across individual dairy farms and cattle, are of interest for research and policy development. This assessment will provide insights into possible changes needed to reduce GHG emissions, the nature and direction of these changes, ways to influence farmer behavior and areas to maximize the adoption of emerging mitigation technologies. The objectives of this study were to (1) quantify the variation in enteric fermentation methane emissions within and among seasonal calving dairy farms with the majority of nutritional requirements met through grazed pasture; (2) use this variation to assess the potential of new individual animal emission monitoring technologies and their impact on mitigation policy. We used a large database of cow performance records for milk production and survival from 2 398 herds in New Zealand, and simulation to account for unobserved variation in feed efficiency and methane emissions per unit of feed. Results showed an average of 120 ± 31.4 kg predicted methane (CH4) per cow per year after accounting for replacement costs, ranging 8.9–323 kg CH4/cow per year. Whereas milk production, survival and predicted live weight were reasonably effective at predicting both individual and herd average levels of per cow feed intake, substantial within animal variation in emissions per unit of feed reduced the ability of these variables to predict variation in per animal methane output. Animal-level measurement technologies predicting only feed intake but not emissions per unit of feed are unlikely to be effective for advancing national policy goals of reducing dairy farming enteric methane output. This is because farmers seek to profitably utilize all farm feed resources available, so improvements in feed efficiency will not result in the reduction in feed utilization required to reduce methane emissions. At a herd level, average per cow milk production and live weight could form the basis of assigning a farm-level point of obligation for methane emissions. In conclusion, a comprehensive national database infrastructure that was tightly linked to animal identification and movement systems, and captured live weight data from existing farm-level recording systems, would be required to make this effective. Additional policy and incentivization mechanisms would still be required to encourage farmer uptake of mitigation interventions, such as novel feed supplements or vaccines that reduce methane emissions per unit of feed.  相似文献   

17.
Linkage of rumen microbial structure to host phenotypical traits may enhance the understanding of host-microbial interactions in livestock species. This study used culture-independent PCR-denaturing gradient gel electrophoresis (PCR-DGGE) to investigate the microbial profiles in the rumen of cattle differing in feed efficiency. The analysis of detectable bacterial PCR-DGGE profiles showed that the profiles generated from efficient steers clustered together and were clearly separated from those obtained from inefficient steers, indicating that specific bacterial groups may only inhabit in efficient steers. In addition, the bacterial profiles were more likely clustered within a certain breed, suggesting that host genetics may play an important role in rumen microbial structure. The correlations between the concentrations of volatile fatty acids and feed efficiency traits were also observed. Significantly higher concentrations of butyrate (P < 0.001) and valerate (P = 0.006) were detected in the efficient steers. Our results revealed potential associations between the detectable rumen microbiota and its fermentation parameters with the feed efficiency of cattle.  相似文献   

18.
This study aimed to investigate the impact of repeated acidosis challenges (ACs) and the effect of live yeast supplementation (Saccharomyces cerevisiae I-1077, SC) on rumen fermentation, microbial ecosystem and inflammatory response. The experimental design involved two groups (SC, n=6; Control, n=6) of rumen fistulated wethers that were successively exposed to three ACs of 5 days each, preceded and followed by resting periods (RPs) of 23 days. AC diets consisted of 60% wheat-based concentrate and 40% hay, whereas RPs diets consisted of 20% concentrate and 80% hay. ACs induced changes in rumen fermentative parameters (pH, lactate and volatile fatty-acid concentrations and proportions) as well as in microbiota composition and diversity. The first challenge drove the fermentation pattern towards propionate. During successive challenges, rumen pH measures worsened in the control group and the fermentation profile was characterised by a higher butyrate proportion and changes in the microbiota. The first AC induced a strong release of rumen histamine and lipopolysaccharide that triggered the increase of acute-phase proteins in the plasma. This inflammatory status was maintained during all AC repetitions. Our study suggests that the response of sheep to an acidosis diet is greatly influenced by the feeding history of individuals. In live yeast-supplemented animals, the first AC was as drastic as in control sheep. However, during subsequent challenges, yeast supplementation contributed to stabilise fermentative parameters, promoted protozoal numbers and decreased lactate producing bacteria. At the systemic level, yeast helped normalising the inflammatory status of the animals.  相似文献   

19.
Cattle production faces new challenges regarding sustainability with its three pillars - economic, societal and environmental. The following three main factors will drive dairy cattle selection in the future: (1) During a long period, intensive selection for enhanced productivity has deteriorated most functional traits, some reaching a critical point and needing to be restored. This is especially the case for the Holstein breed and for female fertility, mastitis resistance, longevity and metabolic diseases. (2) Genomic selection offers two new opportunities: as the potential genetic gain can be almost doubled, more traits can be efficiently selected; phenotype recording can be decoupled from selection and limited to several thousand animals. (3) Additional information from other traits can be used, either from existing traditional recording systems at the farm level or from the recent and rapid development of new technologies and precision farming. Milk composition (i.e. mainly fatty acids) should be adapted to better meet human nutritional requirements. Fatty acids can be measured through a new interpretation of the usual medium infrared spectra. Milk composition can also provide additional information about reproduction and health. Modern milk recorders also provide new information, that is, on milking speed or on the shape of milking curves. Electronic devices measuring physiological or activity parameters can predict physiological status like estrus or diseases, and can record behavioral traits. Slaughterhouse data may permit effective selection on carcass traits. Efficient observatories should be set up for early detection of new emerging genetic defects. In the near future, social acceptance of cattle production could depend on its capacity to decrease its ecological footprint. The first solution consists in increasing survival and longevity to reduce replacement needs and the number of nonproductive animals. At the individual level, selection on rumen activity may lead to decreased methane production and concomitantly to improved feed efficiency. A major effort should be dedicated to this new field of research and particularly to rumen flora metagenomics. Low input in cattle production is very important and tomorrow's cow will need to adapt to a less intensive production environment, particularly lower feed quality and limited care. Finally, global climate change will increase pathogen pressure, thus more accurate predictors for disease resistance will be required.  相似文献   

20.
Feeding ruminants a high-grain (HG) diet is a widely used strategy to improve milk yield and cost efficiency. However, it may cause certain metabolic disorders. At present, information about the effects of HG diets on the systemic metabolic profile of goats and the correlation of such diets with rumen bacteria is limited. In the present study, goats were randomly divided into two groups: one was fed the hay diet (hay; n = 5), while the other was fed HG diets (HG; n = 5). On day 50, samples of rumen contents, peripheral blood serum and liver tissues were collected to determine the metabolic profiles in the rumen fluid, liver and serum and the microbial composition in rumen. The results revealed that HG diets reduced (P < 0.05) the community richness and diversity of rumen microbiota, with an increase in the Chao 1 and Shannon index and a decrease in the Simpson index. HG diets also altered the composition of rumen microbiota, with 30 genera affected (P < 0.05). Data on the metabolome showed that the metabolites in the rumen fluid, liver and serum were affected (variable importance projection > 1, P <0.05) by dietary treatment, with 47, 10 and 27 metabolites identified as differentially metabolites. Pathway analysis showed that the common metabolites in the shared key pathway (aminoacyl-transfer RNA biosynthesis) in the rumen fluid, liver and serum were glycine, lysine and valine. These findings suggested that HG diets changed the composition of the rumen microbiota and metabolites in the rumen fluid, liver and serum, mainly involved in amino acid metabolism. Our findings provide new insights into the understanding of diet-related systemic metabolism and the effects of HG diets on the overall health of goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号