首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polybrene and/or spermidine treatments were used to deliver plasmid DNA into cotton suspension culture obtained from cotyledon-induced callus. The transforming plasmid (pBI221.23) contained the selectablehpt gene for hygromycin resistance and the screenablegus gene. Primary transformant cotton plants were regenerated and analyzed by DNA hybridization and β-glucuronidase assay. The combination polybrene-spermidine treatment greatly enhanced the uptake and expression of DNA and the recovery of nonchimeric germ-line transgenic cotton plants.  相似文献   

2.
Li X  Wang XD  Zhao X  Dutt Y 《Plant cell reports》2004,22(9):691-697
A novel method for the genetic transformation of cotton pollen by means of vacuum infiltration and Agrobacterium-mediated transformation is reported. The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants. Transformation was carried out in cotton pollen-germinating medium, and transformation was mediated by vector pCAMBIA1301, which contains a reporter gene -glucuronidase (GUS), a selectable marker gene, hpt, for hygromycin resistance and the genes of interest, acsA and acsB. The integration and expression of acsA, acsB and GUS in the genome of transgenic plants were analyzed with Southern blot hybridization, PCR, histochemical GUS assay and Northern blot hybridization. We found that following pollination on the cotton stigma transformed pollen retained its capability of double-fertilization and that normal cotton seeds were produced in the cotton ovary. Of 1,039 seeds from 312 bolls pollinated with transformed pollen grains, 17 were able to germinate and grow into seedlings for more than 3 weeks in a nutrient medium containing 50 mg/l hygromycin; eight of these were transgenic plants integrated with acsA and acsB, yielding a 0.77% transformation rate. Fiber strength and length from the most positive transformants was 15% greater than those of the control (non-transformed), a significant difference, as was cellulose content between the transformed and control plants. Our study suggests that transformation through vacuum infiltration and Agrobacterium mediated transformation can be an efficient way to introduce foreign genes into the cotton pollen grain and that cotton fiber quality can be improved with the incorporation of the prokaryotic genes acsA and acsB.Communicated by D. Bartels  相似文献   

3.
Mature de-embryonated cotyledons with intact proximal end of Vigna unguiculata were cultured on B5 basal medium containing varying concentrations of BAP. Thirty-six percent of the explants produced shoots on B5 medium supplemented with 8× 10–6 M BAP. Cotyledon explants were pre-incubated for 24 h, inoculated with A. tumefaciens pUCD2614 carrying pUCD2340, co-cultivated for 48 h and transferred to hygromycin-B (25 mg/l) containing shoot induction medium. Approximately 15–19% of the explants produced shoots on the selection medium. The elongated shoots were subsequently rooted on B5 basal medium containing hygromycin. The transgenic plants were later established in pots. The presence of hpt gene in the transgenic plants was confirmed by Southern blot hybridization.Abbreviations BAP 6-Benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - hpt hygromycin phosphotransferase - IAA Indole-3-acetic acid - NAA 1-naphthaleneacetic acid  相似文献   

4.
Mature seed‐derived callus from an elite Chinese japonica rice cv. Eyl 105 was transformed with a plasmid containing the selectable marker hygromycin phosphotransferase (hpt) and the reporter β‐glucuronidase (gusA) genes via particle bombardment. After two rounds of selection on hygromycin (30 mg/l)‐containing medium, resistant callus was transferred to hygromycin (30 mg/l)‐containing regeneration medium for plant regeneration. Twenty‐three independent transgenic rice plants were regenerated from 127 bombarded callus with a transformation frequency of 18.1%. All the transgenic plants contained both gusA and hpt genes, revealed by PCR/Southern blot analysis. GUS assay revealed 18 out of 23 plants (78.3%) proliferated on hygromycin‐containing medium had GUS expression at various levels. Genetic analysis confirmed Mendelian segregation of transgenes in progeny. From R2 generations with their R1 parent plants showing 3:1 Mendelian segregation, we identified three independent homozygous transgenic rice lines. The homozygous lines were phenotypically normal and fertile compared to the control plants. We demonstrate that homozygous transgenic rice lines can be obtained via particle bombardment‐mediated transformation and through genetic analysis‐based selection.  相似文献   

5.
Summary An analysis of the progeny of primary transgenic pea plants in terms of transmission of the transferred DNA, fertility and morphology is presented. A transformation system developed for pea that allows the regeneration of fertile transgenic pea plants from calli selected for antibiotic resistance was used. Expiants from axenic shoot cultures were co-cultivated with a nononcogenic Agrobacterium tumefaciens strain carrying a gene encoding hygromycin phosphotransferase as selectable marker, and transformed callus could be selected on callus-inducing media containing 15 mg/l hygromycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on the hygromycin resistant calli, and the regenerated shoots could subsequently be rooted and transferred to the greenhouse, where they proceeded to flower and set seed. The transmission of the introduced gene into the progeny of the regenerated transgenic plants was studied over two generations, and stable transmission was shown to take place. The transgenic nature of the calli and regenerated plants and their progeny was confirmed by DNA and RNA analysis. The DNA and ploidy levels of the progeny plants and primary regenerants were studied by chromosome analysis, and the offspring of the primary transformants were evaluated morphologically.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - BA 6-ben-zyladenine - hpt hygromycin phosphotransferase gene - IAA indole acetic acid, kin, kinetin - NAA -naphtalene acetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

6.
Transgenic cotton has been released for cultivation in several parts of the world to increase crop productivity. However, concerns have been raised regarding the possible undesirable effects of genetically modified crops on non-target organisms in the eco-system. Therefore, we studied the effects of transgenic cottons with cry1Ac gene from Bacillus thuringiensis Berliner (Bt) on the natural enemies of cotton bollworm/legume pod borer, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) under field and laboratory conditions. There was no apparent effect of transgenic cotton on the relative abundance of predatory spiders (Clubiona sp. and Neoscona sp.), coccinellid (Cheilomenes sexmaculatus Fab.), and the chrysopid (Chrysoperla carnea Stephens). However, the abundance of spiders, coccinellids, and chrysopids was quite low in insecticide protected plots towards end of the cropping season. There was a significant reduction in cocoon formation and adult emergence of the ichneumonid parasitoid, Campoletis chlorideae Uchnida reared on H. armigera larvae fed on the leaves of transgenic cottons before and after parasitization. However, no Bt toxins were detected in H. armigera larvae and the parasitoid cocoons with enzyme linked immunosorbent assay. Reduction in cocoon formation was because of early mortality of the H. armigera larvae due to Bt toxins in the leaves of transgenic cotton. There was a slight reduction in adult weight and fecundity, and prolongation of the larval period when the parasitoid was raised on H. armigera larvae fed on the leaves of transgenic cotton before and after parasitization. Survival and development of C. chlorideae was also poor when H. armigera larvae were fed on the leaves of cotton hybrid Mech 184. The adverse effects of transgenic cotton on survival and development of C. chlorideae were largely due to early mortality, and possibly poor nutritional quality of H. armigera larvae due to toxic effects of the transgene.  相似文献   

7.
Leaf piece explants of five Brassica juncea (L.) Czern. cultivars were transformed with an Agrobacterium tumefaciens strain EHA105 harboring the plasmid pCAMBIA1301, which contains the β-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes under the control of cauliflower mosaic virus 35S (CaMV35S) promoter. Transgenic plants were regenerated on Murashige and Skoog (MS) medium fortified with 8.87 μM 6-benzylaminopurine, 0.22 μM 2,4-dichlorophenoxyacetic acid, and 20 μM silver nitrate in the presence of 30 mg/l hygromycin. When co-culture took place in the presence of 100 μM acetosyringone, the efficiency of stable transformation was found to be approximately 19% in the T 0 generation, with the transgenic plants and their progeny showing constitutive GUS expression in different plant organs. Southern blot hybridization of uidA and hpt genes confirmed transgene integration within the genome of transformed plants of each cultivar. Inheritance of hpt gene for single copy T-DNA inserts showed a 3:1 pattern of Mendelian segregation in progeny plants through germination of T 1 seeds on MS medium containing 30 mg/l hygromycin. The protocol described here reports superior transformation efficiency over previously published protocols and should contribute to enhanced biotechnology applications in B. juncea.  相似文献   

8.
Spider Venom Toxin Protects Plants from Insect Attack   总被引:1,自引:0,他引:1  
Many of the toxin proteins, that have been heterogeneously expressed in agricultural crops to provide resistance to insect pests, are too specific or are only mildly effective against the major insect pests. Spider venoms are a complex cocktail of toxins that have evolved specifically to kill insects. Here we show that the ω-ACTX-Hv1a toxin (Hvt), a component of the venom of the Australian funnel web spider (Hadronyche versuta) that is a calcium channel antagonist, retains its biological activity when expressed in a heterologous system. Expressed as a fusion protein in E. coli, the purified toxin fusion immobilized and killed Helicoverpa armigera and Spodoptera littoralis caterpillars when applied topically. Transgenic expression of Hvt in tobacco effectively protected the plants from H. armigera and S. littoralis larvae, with 100% mortality within 48 h. We conclude that the Hvt is an attractive and effective molecule for the transgenic protection of plants from herbivorous insects which should be evaluated further for possible application in agriculture. The authors Sher Afzal Khan and Zahid Mukhtar contributed equally to this work.  相似文献   

9.
【目的】近年来,我国长江流域和黄河流域棉花面积锐减,种植区域向滨海盐碱地或干旱地转移。研究盐碱旱地转基因棉田与非转基因棉田昆虫群落差异,可为盐碱旱地对转基因棉田生物影响和盐碱旱地转基因棉田害虫防治提供理论指导。【方法】在山东东营和河北枣强盐碱干旱地转Bt基因棉田分别设置常规施药田和非施药田,进行了系统的田间昆虫种群消长动态的调查和统计分析。【结果】中轻度盐碱旱地种植转基因棉花对靶标害虫棉铃虫具有较好的控制作用;与非转基因棉花相比,对其他非靶标害虫棉蚜、烟粉虱和盲蝽及自然天敌龟纹瓢虫、草间小黑蛛种群数量无显著影响,草蛉种群数量在转基因棉田低于非转基因棉田;喷施化学农药对棉铃虫幼虫和棉蚜的防治作用较好,对烟粉虱和盲蝽的防治效果年度间和试验点间有差异,对龟纹瓢虫的杀伤力较大,对草间小黑蛛和草蛉未见明显影响。【结论】盐碱旱地对棉田不同的害虫和天敌影响不同,且转基因棉田与非转基因棉田昆虫群落结构与对照棉田无显著差异。  相似文献   

10.
Colonial bentgrass (Agrostis tenuis Sibth. Fl. Oxen.) is a cool-season turfgrass used on fairways in golf courses. The object of this study was to develop a more efficient, reliable and repeatable approach in transforming the grass using Agrobacterium (strain LBA4404), in which -glucuronidase (gus) gene was used as a reporter and hygromycin phosphotransferase (hpt) gene as a selectable marker. This vector was effective in transforming 7-week-old calluses derived from mature seeds cultured on MS medium supplemented with 2,4-D. A two-step solid medium selection with increasing hygromycin concentration (from 50 to 70 mg l–1) was used to obtain resistant calluses. Hundreds of transgenic plants have been produced from several independent transformed calluses. The presence of functional -glucuronidase (GUS) was detected in hygromycin-resistant calluses, young leaves and roots of transgenic plants. The transgenic plants collected from greenhouse showed strong resistance to 50 mg l–1 hygromycin solution. Four putative transgenic plants and one control plant were randomly chosen and analyzed by Southern blot analysis. Bands corresponding to the hpt gene were clearly shown in transgenic plants.  相似文献   

11.
Three antibiotics were evaluated for their effects on the elimination of Agrobacterium tumefaciens during the genetic transformation of loblolly pine ( Pinus taeda L.) using mature zygotic embryos as targets. Agrobacterium tumefaciens strains, EHA105, GV3101, and LBA 4404, all harbouring the plasmid pCAMBIA1301, which carries the selectable marker gene, hygromycin phosphotransferase ( hpt) controlled by the cauliflower mosaic virus 35S promoter and terminator, and the uidA reporter gene (GUS) driven by the cauliflower mosaic virus 35S promoter and the terminator of nopaline synthase gene, were used in this study. Exposure to 350 mg l-1 carbenicillin, claforan, and timentin respectively for up to 6 weeks did not eliminate the Agrobacterium, while antibiotics at 500 mg l-1 eradicated them from the co-cultivated zygotic embryos. All three antibiotics increased callus growth and shoot regeneration at 350 and 500 mg l-1 each, but reduced callus growth and shoot regeneration at 650 mg l-1 when compared with controls. Putative transgenic calli were selected for continued proliferation and differentiation on 4.5 mg l-1 hygromycin-containing medium. Transformed calli and transgenic plants produced on a selection medium containing 4.5 mg l-1 hygromycin were confirmed by GUS histochemical assays, by polymerase chain reaction (PCR), and by Southern blot analysis. These results are useful for future studies on optimizing genetic transformation procedures in loblolly pine.  相似文献   

12.
The genes cry1Ac and cry1Ca from Bacillus thuringiensis subsps. kurstaki HD-73 and aizawai 4J4, respectively, encoding δ-endotoxins against lepidopteran larvae were isolated, cloned and expressed in Escherichia coli, with and without cyt1Aa (encoding cytolytic protein) and p20 (accessory protein) from subsp. israelensis. Nine combinations of the genes under control of an early T7, P A1 inducible promoter, produced the encoding proteins. Toxicities were examined against larvae of three major agricultural pests: Pectinophora gossypiella, Helicoverpa armigera and Spodoptera littoralis. The clones expressing cyt1Aa, with or without p20, were not toxic. The clone expressing cry1Ac (pBt-1A) was the most toxic to P. gossypiella (LC50 of 0.27 × 108 cells g−1). Clone pBt-1CA expressing cry1Ca and cry1Ac displayed the highest toxicity (LC50 of 0.12 × 108 cells ml−1) against S. littoralis. Clone pBt-1CARCy expressing all four genes (cry1Ca, cry1Ac, p20, cyt1Aa) in tandem exhibited the highest toxicity to H. armigera (LC50 of 0.16 × 108 cells ml−1). Cyt1Aa failed to raise the toxicity of these Cry toxins against P. gossypiella and S. littoralis but significantly enhanced toxicity against H. armigera. Two additional clones expressing either cry1Ac or cry1Ca under tandem promoters, P A1 and P psbA (constitutive), displayed significantly higher toxicities (7.5- to 140-fold) than their counterparts with P A1 alone, reducing the LC50 values to below 107 cells ml−1. Vadim Khasdan and Maria Sapojnik are contributed equally to this work.  相似文献   

13.
We have developed a system to produce transgenic plants in tea (Camelia sinensis [L.] O. Kuntze) viaAgrobacterium tumefaciens-mediated transformation of embryogenic calli. Cotyledon-derived embryogenic callus cultures were cocultivated with anA. tumefaciens strain (AGL 1) harboring a binary vector carrying the hygromycin phosphotransferase (hpt II), glucuronidase (uid A), and green fluorescent protein (GFP) genes in the tDNA region. Following cocultivation, embryogenic calli were cultured in medium containing 500 mg/L carbenicillin for 1 wk and cultured on an antibiotic selection medium containing 75 mg/L hygromycin for 8–10 wk. Hygromycin-resistant somatic embryos were selected. The highest production efficiency of hygromycin-resistant calli occurred with cocultivation for 6–7 d in the presence of 400 μM acetosyringone (AS). Hygromycin-resistant somatic embryos developed into complete plantlets in regeneration medium containing half-strength Murashige and Skoog (MS) salts with 1 mg/L benzyl amino purine (BAP) and 9 mg/L giberellic acid (GA3). Transformants were subjected to GFP expression analysis, β-glucuronidase (GUS) histochemical assay, PCR analysis, and Southern hybridization to confirm gene integration.  相似文献   

14.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

15.
16.
This paper describes the development of a reliable transformation system for garlic (Allium sativum L.) and its application in producing insect resistant GM garlic lines. The transformation system is based on Agrobacterium tumefaciens as a vector, using young callus derived from different callus sources: callus induced from both apical and non-apical root segments of in vitro plantlets, true garlic seeds and bulbils. Two different reporter genes were used in our garlic transformation experiments, namely the gusA gene coding for -glucuronidase and the gfp gene coding for green fluorescent protein. A total of seven independent transformed callus lines derived from different callus sources were obtained. The advantage of the system developed is the short time period needed for completion of the protocol (about 6 months) and the year-round availability of high quality callus from in vitro roots. The highest transformation frequency in a single experiment (1.47%), was obtained using garlic cv. 'Printanor'. Differences existed between cultivars in transformation frequency but were not significant. The same was found for the plasmids used in transforming garlic. Via PCR the presence of the gusA, hpt (hygromycin phosphotransferase) and gfp genes could be demonstrated in putative transformed in vitro plants. Southern hybridization showed that the reporter gene gusA and the selective gene hpt were stably integrated into the garlic genome. After transfer to the greenhouse of in vitro regenerants, transgenic garlic harbouring the gusA gene survived and grew well, whereas the gfp transgenic garlic gradually died under these conditions.Using this protocol transgenic garlic resistant to beet armyworm using the cry1Ca and H04 resistance genes from Bacillus thuringiensis were developed. Via Southern hybridization it was shown that the cry1Ca sequence was stably integrated into the garlic genome. After transfer of the transgenic in vitro garlic plants to the greenhouse, the cry1Ca plants developed normally and grew well to maturity with normal bulbs. However, all transgenic in vitro H04 garlic plants did not survive after transfer to the greenhouse. Transgenic cry1Ca garlic plants proved completely resistant to beet armyworm in a number of in vitro bio-assays. This finding will facilitate the development of new garlic cultivars resistant to beet armyworm.  相似文献   

17.
A silicon carbide whisker-mediated gene transfer system with recovery of fertile and stable transformants was developed for cotton (Gossypium hirsutum L.) cv. Coker-312. Two-month-old hypocotyl-derived embryogenic/non-embryogenic calli at different days after subculture were treated with silicon carbide whiskers for 2 min in order to deliver pGreen0029 encoding GUS gene and pRG229 AVP1 gene, encoding Arabidopsis vacuolar pyrophosphatase, having neomycin phosphotransferaseII (nptII) genes as plant-selectable markers. Three crucial transformation parameters, i.e., callus type, days after subculture and selection marker concentration for transformation of cotton calli were evaluated for optimum efficiency of cotton embryogenic callus transformation giving upto 94% transformation efficiency. Within six weeks, emergence of kanamycin-resistant (kmr) callus colonies was noted on selection medium. GUS and Southern blot analysis showed expression of intact and multiple transgene copies in the transformed tissues. Kanamycin wiping of leaves from T1, T2, and T3 progeny plants revealed that transgenes were inherited in a Mendelian fashion. Salt treatment of T1 AVP1 transgenic cotton plants showed significant enhancement in salt tolerance as compared to control plants. Thus far, this is first viable physical procedure after particle bombardment available for cotton that successfully can be used to generate fertile cotton transformants.  相似文献   

18.
Summary Mature seed-derived callus from an elite Chinese japonica rice cv. Ewan 5 was cotransformed with two plasmids, pWRG1515 and pRSSGNAl, containing the selectable marker hygromycin phosphotransferase gene (hpt), the reporter β-glucuronidase gene (gusA) and the snowdrop (Galanthus nivalis) lectin gene (gna) via particle bombardment. Thirty-five independent transgenic rice plants were regenerated from 177 bombarded calluses. Eighty-three percent of the transgenic plants contained all three genes, as revealed by Southern blot analysis. Western blot analysis revealed that 23 out of 29 gna-containing transgenic plants expressed Galanthus nivalis agglutinin (GNA) (79%) at various levels, with the highest expression being approximately 0.5% of total soluble protein. Genetic analysis confirmed Mendelian segregation of all three transgenes (gna, hpt and gusA) in the R2 progeny. Amongst the R2 generation two independent homozygous lines were identified that expressed all three transgenes. Insect bioassay and feeding tests showed that these homozygous lines had significant inhibition to rice brown planthopper (Nilaparvata lugens, BPH) by decreasing the survival, overall fecundity of BPH, retarding development, and decreasing the feeding of BPH. These BPH-resistant lines have been incorporated into a rice insect resistance breeding program. This is the first report that homozygous transgenic rice lines expressing GNA, developed by genetic transformation and through genetic analysis-based selection, conferred enhanced resistance to BPH.  相似文献   

19.
This paper describes the development of a reliable transformation protocol for onion and shallot (Allium cepa L.) which can be used year-round. It is based on Agrobacterium tumefaciens as a vector, with three-week old callus, induced from mature zygotic embryos, as target tissue. For the development of the protocol a large number of parameters were studied. The expression of the uidA gene coding for -glucuronidase was used as an indicator in the optimization of the protocol. Subspecies (onion and shallot) and cultivar were important factors for a successful transformation: shallot was better than onion and for shallot cv. Kuning the best results were obtained. Also, it was found that constantly reducing the size of the calli during subculturing and selection by chopping, thus enhancing exposure to the selective agent hygromycin, improved the selection efficiency significantly. Furthermore, callus induction medium and co-cultivation period showed a significant effect on successful stable transformation. The usage of different Agrobacterium strains, callus ages, callus sources and osmotic treatments during co-cultivation did not influence transformation efficiency. The highest transformation frequency (1.95%), was obtained with shallot cv. Kuning. A total of 11 independent transformed callus lines derived from zygotic embryos were produced: seven lines from shallot and four lines from onion. Large differences in plantlet production were observed among these lines. The best line produced over 90 plantlets. Via PCR the presence of the uidA and hpt (hygromycin phosphotransferase) genes could be demonstrated in these putative transformed plants. Southern hybridization showed that most lines originated from one transformation event. However, in one line plants were obtained indicating the occurrence and rescue of at least three independent transformation events. This suggested that T-DNA integration occurred in different cells within the callus. Most transgenic plants only had one copy of T-DNA integrated into their genomes. FISH performed on 12 plants from two different lines representing two integration events showed that original T-DNA integration had taken place on the distal end of chromosomes 1 or 5. A total of 83 transgenic plants were transferred to the greenhouse and these plants appeared to be diploid and normal in morphology.  相似文献   

20.
Factors influencing the efficiency of Agrobacterium-mediated transformation of pea were tested using highly efficient, direct regeneration system. The virulence of three Agrobacterium strains (octopine LBA 4404, nopaline C58C1 and succinamopine, hypervirulent EHA 105) clearly varied giving 1 transgenic plant per 100 explants for LBA 4404, 2.2 for C58C1 and 8.2 for EHA 105. To test the efficacy of selection agents we used the hypervirulent EHA 105 strain carrying pGPTV binary vector with one of four different selection genes: nptII, hpt, dhfr or bar. The mean number of transgenic, kanamycin-resistant plants for two cultivars tested was 4.2 per 100 explants and was slightly higher than the number of phosphinothricin-resistant plants (3.6 plants per 100 explants). The proportion of transgenics among kanamycin-selected plants was also higher than among phosphinothricin-resistant plants (35% and 28% respectively). There was no regeneration on hygromycin or methotrexate media (transformation with hpt and dhfr genes). Acetosyringone had no apparent influence on efficiency of transformation with hypervirulent EHA 105 strain, however it did affect the rate of transformation when moderately virulent C58C1 was used. Recovery of transgenic plants was enhanced after application of 5-azacytidine. The presence of integrated T-DNA was checked by PCR and confirmed by Southern hybridization. T-DNA was stably transmitted to the next generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号