首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
Increases in plasma concentrations of total homocysteine (tHcy) have recently been reported in multiple sclerosis (MS) as the alteration of the methionine cycle for the onset of autoimmune diseases. Homocysteine (Hcy) and cysteine (Cys) are generated by the methionine cycle and transsulfuration reactions. Their plasma levels are subjected to complex redox changes by oxidation and thiol/disulfide (SH/SS) exchange reactions regulated by albumin. The methionine loading test (MLT) is a useful in vivo test to assay the functionality of the methionine cycle and transsulfuration reactions. Time courses of redox species of Cys, cysteinylglycine (CGly), Hcy, and glutathione have been investigated in plasma of MS patients versus healthy subjects after an overnight fasting, and 2, 4, and 6 h after an oral MLT (100 mg/kg body weight), to detect possible dysfunctions of the methionine cycle, transsulfuration reactions and alterations in plasma distribution of redox species. After fasting, the MS group showed a significant increase in cysteine-protein mixed disulfides (bCys) and total Cys (tCys). While plasma bCys and tCys in MS group remained elevated after methionine administration when compared to control, cystine (oxCys) increased significantly with respect to control. Although increased plasma concentrations of bCys and tCys at fasting might reflect an enhance of transsulfuration reactions in MS patients, this was not confirmed by the analysis of redox changes of thiols and total thiols after MLT. This study has also demonstrated that albumin-dependent SH/SS exchange reactions are a potent regulation system of thiol redox species in plasma.  相似文献   

2.
Tan Y  Hoffman RM 《Nature protocols》2008,3(9):1388-1394
A protocol for measuring the total plasma homocysteine (tHCY) concentration in very small samples using a selective, recombinant homocysteine alpha, gamma-lyase (rHCYase) and a small portable fluorescence reader is described. The rHCYase produces hydrogen sulfide (H(2)S) from tHCY without interference from physiological concentrations of Cys or other plasma components. H(2)S is determined through reactivity with N,N-dibutyl phenylene diamine (DBPDA), which leads to the formation of a fluorescent chromophore. Only 5 microl of plasma/serum sample is required, which can be obtained from a finger prick, suggesting great potential for mass screening. The assay takes approximately 20 min.  相似文献   

3.
Total homocysteine (tHcy) and cysteine (tCys) concentrations in biological fluids are routinely used in the clinical diagnosis of genetic and metabolic diseases, and this necessitates the development of rapid and sensitive methods for quantification. Liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) was used to measure tHcy and tCys in 23 plasma and 21 urine samples from healthy adults and 14 urine samples from healthy children. The results were compared with a standard high-performance liquid chromatography (HPLC) method. The coefficient of variation (CV) for the LC-MS/MS method ranged from 2.9% to 6.1% for the intraassay and 4.8% to 6.4% for the interassay. Mean recoveries were close to 100% for both plasma and urinary tHcy and tCys. The mean plasma tHcy and tCys concentrations in healthy adults were 8.62 and 261.40 micromol/L, respectively. The mean urinary tHcy and tCys in adults were 0.98 and 22.60 micromol/mmol creatinine, respectively. The mean urinary tHcy and tCys in children were 1.17 and 27.43 micromol/mmol creatinine, respectively. Bland-Altman difference plots of method comparison between LC-MS/MS and HPLC showed good agreement in plasma and urinary tHcy and tCys concentrations. Our method is suitable for rapid measurements, and the reported urinary values in children will help to develop a pediatric reference range for clinical use.  相似文献   

4.
Escherichia coli thiol peroxidase (Tpx, p20, scavengase) is part of an oxidative stress defense system that uses reducing equivalents from thioredoxin (Trx1) and thioredoxin reductase to reduce alkyl hydroperoxides. Tpx contains three Cys residues, Cys(95), Cys(82), and Cys(61), and the latter residue aligns with the N-terminal active site Cys of other peroxidases in the peroxiredoxin family. To identify the catalytically important Cys, we have cloned and purified Tpx and four mutants (C61S, C82S, C95S, and C82S,C95S). In rapid reaction kinetic experiments measuring steady-state turnover, C61S is inactive, C95S retains partial activity, and the C82S mutation only slightly affects reaction rates. Furthermore, a sulfenic acid intermediate at Cys(61) generated by cumene hydroperoxide (CHP) treatment was detected in UV-visible spectra of 4-nitrobenzo-2-oxa-1,3-diazole-labeled C82S,C95S, confirming the identity of Cys(61) as the peroxidatic center. In stopped-flow kinetic studies, Tpx and Trx1 form a Michaelis complex during turnover with a catalytic efficiency of 3.0 x 10(6) m(-1) s(-1), and the low K(m) (9.0 microm) of Tpx for CHP demonstrates substrate specificity toward alkyl hydroperoxides over H(2)O(2) (K(m) > 1.7 mm). Rapid inactivation of Tpx due to Cys(61) overoxidation is observed during turnover with CHP and a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid, but not H(2)O(2). Unlike most other 2-Cys peroxiredoxins, which operate by an intersubunit disulfide mechanism, Tpx contains a redox-active intrasubunit disulfide bond yet is homodimeric in solution.  相似文献   

5.
Chemical coupling of polyethylene glycol (PEG) to therapeutic proteins reduces their immunogenicity and prolongs their circulating half-life. The limitation of this approach is the number and distribution of sites on proteins available for PEGylation (the N terminus and the -amino group of lysines). To increase the extent of PEGylation, we have developed a method to increase the number of PEGylation sites in a model protein, recombinant methionine alpha,gamma-lyase (recombinant methioninase; rMETase), an enzyme cancer therapeutic cloned from Pseudomonas putida. rMETase was first PEGylated with methoxypolyethylene glycol succinimidyl glutarate-5000 with a molar ratio of PEG:rMETase of 15:1. The carboxyl groups of the initially PEGylated protein were then conjugated with diaminobutane, resulting in carboxyl amidation. This reaction was catalyzed by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, a water-soluble carbodiimide. The steric hindrance provided by the PEG chains already coupled to the protein prevented cross-linking between rMETase molecules during the carboxyl amidation reaction. The carboxyl-amidated PEGylated rMETase was hyper-PEGylated at a molar ratio of PEG to PEG-rMETase of 60:1. Biochemical analysis indicated that 13 PEG chains were coupled to each subunit of rMETase after hyper-PEGylation compared with 6-8 PEG chains attached to the non-carboxyl-amidated PEG-rMETase. Approximately 15-20% of the non-PEGylated rMETase activity was retained in the hyper-PEGylated molecule. Immunogenicity of the hyper-PEG-rMETase was significantly reduced relative to PEG-rMETase and rMETase. Initial results suggest that hyper-PEGylation may become a new strategy for PEGylation of protein biologics.  相似文献   

6.
In the present study, a patient-derived orthotopic xenograft (PDOX) model of recurrent cisplatinum (CDDP)-resistant metastatic osteosarcoma was treated with Salmonella typhimurium A1-R (S. typhimurium A1-R), which decoys chemoresistant quiescent cancer cells to cycle, and recombinant methioninase (rMETase), which selectively traps cancer cells in late S/G2, and chemotherapy. The PDOX models were randomized into the following groups 14 days after implantation: G1, control without treatment; G2, CDDP (6 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, rMETase (100 unit/mouse, i.p., daily, for 2 weeks). G4, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks); G5, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks); G6, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks) and CDDP (6 mg/kg, i.p. injection, weekly, for 2 weeks). On day 14 after initiation, all treatments except CDDP alone, significantly inhibited tumor growth compared to untreated control: (CDDP: p = 0.586; rMETase: p = 0.002; S. typhimurium A1-R: p = 0.002; S. typhimurium A1-R combined with rMETase: p = 0.0004; rMETase combined with both S. typhimurium A1-R and CDDP: p = 0.0001). The decoy, trap and kill combination of S. typhimurium A1-R, rMETase and CDDP was the most effective of all therapies and was able to eradicate the metastatic osteosarcoma PDOX.  相似文献   

7.
Excessive superoxide (O(-)(2)) formation is toxic to cells and organisms. O(-)(2) reacts with either iron-sulfur centers or cysteines (Cys) of cytoplasmic proteins. Reactions with membrane proteins, however, have not been fully characterized. In the present studies, the reaction of O(-)(2) with a protein complex that has glutamate/N-methyl-D-aspartate (NMDA) receptor characteristics and with one of the subunits of this complex was examined. Exposure of the complex purified from neuronal membranes and the recombinant glutamate-binding protein (GBP) subunit of this complex to the O(-)(2)-generating system of xanthine (X) plus xanthine oxidase (XO) caused strong inhibition of L-[3H]glutamate binding. Inhibition of glutamate binding to the complex and GBP by O(-)(2) was greater than that produced by H(2)O(2), another product of the X plus XO reaction. Mutation of two cysteine (Cys) residues in recombinant GBP (Cys(190,191)) eliminated the effect of O(-)(2) on L-[3H]glutamate binding. Both S-thiolation reaction of GBP in synaptic membranes with [35S]cystine and reaction of Cys residues in GBP with [3H]NEM were significantly decreased after exposure of membranes to O(-)(2). Inhibition of cysteylation of membrane GBP by O(-)(2) was still observed after iron chelation by desferrioxamine, albeit diminished, and was not altered by the presence of catalase. Overall, the results indicated that GBP exposure to O(-)(2) modified Cys residues in this protein. The modification was not characterized but it was probably that of disulfide formation.  相似文献   

8.
Gupta S  Kruger WD 《PloS one》2011,6(11):e27598
Cystathionine beta synthase (CBS) is the rate-limiting enzyme responsible for the de novo synthesis of cysteine. Patients with CBS deficiency have greatly elevated plasma total homocysteine (tHcy), decreased levels of plasma total cysteine (tCys), and often a marfanoid appearance characterized by thinness and low body-mass index (BMI). Here, we characterize the growth and body mass characteristics of CBS deficient TgI278T Cbs(-/-) mice and show that these animals have significantly decreased fat mass and tCys compared to heterozygous sibling mice. The decrease in fat mass is accompanied by a 34% decrease in liver glutathione (GSH) along with a significant decrease in liver mRNA and protein for the critical fat biosynthesizing enzyme Stearoyl CoA desaturase-1 (Scd-1). Because plasma tCys has been positively associated with fat mass in humans, we tested the hypothesis that decreased tCys in TgI278T Cbs(-/-) mice was the cause of the lean phenotype by placing the animals on water supplemented with N-acetyl cysteine (NAC) from birth to 240 days of age. Although NAC treatment in TgI278T Cbs(-/-) mice caused significant increase in serum tCys and liver GSH, there was no increase in body fat content or in liver Scd-1 levels. Our results show that lack of CBS activity causes loss of fat mass, and that this effect appears to be independent of low serum tCys.  相似文献   

9.
Pancreatic cancer is a recalcitrant disease. Gemcitabine (GEM) is the most widely-used first-line therapy for pancreatic cancer, but most patients eventually fail. Transformative therapy is necessary to significantly improve the outcome of pancreatic cancer patients. Tumors have an elevated requirement for methionine and are susceptible to methionine restriction. The present study used a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer to determine the efficacy of recombinant methioninase (rMETase) to effect methionine restriction and thereby overcome GEM-resistance. A pancreatic cancer obtained from a patient was grown orthotopically in the pancreatic tail of nude mice to establish the PDOX model. Five weeks after implantation, 40 pancreatic cancer PDOX mouse models were randomized into four groups of 10 mice each: untreated control (n = 10); GEM (100 mg/kg, i.p., once a week for 5 weeks, n = 10); rMETase (100 units, i.p., 14 consecutive days, n = 10); GEM+rMETase (GEM: 100 mg/kg, i.p., once a week for 5 weeks, rMETase: 100 units, i.p., 14 consecutive days, n = 10). Although GEM partially inhibited PDOX tumor growth, combination therapy (GEM+rMETase) was significantly more effective than mono therapy (GEM: p = 0.0025, rMETase: p = 0.0010). The present study is the first demonstrating the efficacy of rMETase combination therapy in a pancreatic cancer PDOX model to overcome first-line therapy resistance in this recalcitrant disease.  相似文献   

10.
Methionine addiction is a fundamental and general hallmark of cancer cells, which require exogenous methionine, despite their ability to synthesize normal amounts of methionine from homocysteine. In contrast, methionine-independent normal cells do not require exogenous methionine in the presence of a methionine precursor. The methionine addiction of cancer cells is due to excess transmethylation reactions. We have previously shown that histone H3 lysine marks are over-methylated in cancer cells and the over-methylation is unstable when the cancer cells are restricted of methionine. In the present study, we show that methionine-addicted osteosarcoma cells are sensitive to both methotrexate (MTX) and recombinant methioninase (rMETase), but they affect histone H3 lysine-methylation in the opposite direction. Concentrations of MTX and rMETase, which inhibit osteosarcoma cells viability to 20%, had opposing effects on the status of histone methylation of H3K9me3 and H3K27me3. rMETase significantly decreased the amount of H3K9me3 and H3K27me3. In contrast, MTX significantly increased the amount of H3K9me and H3K27me3. The results suggest that increase or decrease in these methylated histone lysine marks is associated with proliferation arrest of methionine-addicted osteosarcoma.  相似文献   

11.
The interactions of the unpaired thiol residue (Cys34) of human serum albumin (HSA) with low-molecular-weight thiols and an Au(I)-based antiarthritic drug have been examined using electrospray ionization mass spectrometry. Early measurements of the amount of HSA containing Cys34 as the free thiol suggested that up to 30% of circulating HSA bound cysteine as a mixed disulfide. It has also been suggested that reaction of HSA with cysteine, occurs only on handling and storage of plasma. In our experiments, there were three components of HSA in freshly collected plasma from normal volunteers, HSA, HSA+cysteine, and HSA+glucose in the ratio approximately 50:25:25. We addressed this controversy by using iodoacetamide to block the free thiol of HSA in fresh plasma, preventing its reaction with plasma cysteine. When iodoacetamide was injected into a vacutaner tube as blood was collected, the HSA was modified by iodoacetamide, with 20-30% present as the mixed disulfide with cysteine (HSA+cys). These data provide strong evidence that 20-30% of HSA in normal plasma contains one bound cysteine. Reaction of HSA with [Au(S(2)O(3))(2)](3-) resulted in formation of the adducts HSA+Au(S(2)O(3)) and HSA+Au. Reaction of HSA with iodoacetamide prior to treatment with [Au(S(2)O(3))(2)](3-) blocked the formation of gold adducts.  相似文献   

12.

Context

Plasma total cysteine (tCys) independently relates to fat mass in adults. Dietary cyst(e)ine promotes adiposity and decreases glucose tolerance in some rodent models, but alleviates insulin resistance in others.

Objective

To investigate whether the association of tCys with body fat extends to children at particular risk of obesity, and whether tCys is associated with insulin resistance and obesity-associated inflammation.

Methods

We explored the cross-sectional relations of fasting plasma tCys and related metabolites with body composition measured by dual-energy X-ray absorptiometry in 984 Hispanic children and adolescents aged 4–19 years from the Viva La Familia Study. Linear and logistic regression and dose-response curves were used to evaluate relations of tCys with obesity, insulin resistance and inflammatory markers including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and C-reactive protein (CRP).

Results

tCys, methionine and total homocysteine (tHcy) increased with age. Upper tCys quartile was independently associated with a 5-fold increased risk of obesity (95% CI 3.5–8.0, P<0.001), and 2-fold risk of insulin resistance (95% CI: 1.6-5.0, P<0.001; adjusted for body fat%). Within the overweight/obese subgroup, but not in normal-weight children, tCys accounted for 9% of the variability in body fat% (partial r = 0.30, P<0.001; adjusted for age and gender). tCys correlated positively with serum non-esterified fatty acids and leptin, partly independent of body fat, but was not associated with serum IL-6, TNF-α or MCP-1. A positive correlation with CRP disappeared after adjustment for BMI.

Conclusion

tCys is independently associated with obesity and insulin resistance in Hispanic children and adolescents, highlighting a previously underappreciated link between the sulfur amino acid metabolic pathway and obesity and cardiometabolic risk.  相似文献   

13.
The 20 S proteasome core purified from Saccharomyces cerevisiae is inhibited by reduced glutathione (GSH), cysteine (Cys), or the GSH precursor gamma-glutamylcysteine. Chymotrypsin-like activity was more affected by GSH than trypsin-like activity, whereas the peptidylglutamyl-hydrolyzing activity (caspase-like) was not inhibited by GSH. Cys-sulfenic acid formation in the 20 S core was demonstrated by spectral characterization of the Cys-S(O)-4-nitrobenzo-2-oxa-1,3-diazole adduct, indicating that 20 S proteasome Cys residues might react with reduced sulfhydryls (GSH, Cys, and gamma-glutamylcysteine) through the oxidized Cys-sulfenic acid form. S-Glutahionylation of the 20 S core was demonstrated in vitro by GSH-biotin incorporation and by decreased alkylation with monobromobimane. Compounds such as N-ethylmaleimide (-S-sulfhydril H alkylating), dimedone (-SO sulfenic acid H reactant), or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (either -SH or -SOH reactant) highly inhibited proteasomal chymotrypsin-like activity. In vivo experiments revealed that 20 S proteasome extracted from H(2)O(2)-treated cells showed decreased chymotrypsin-like activity accompanied by S-glutathionylation as demonstrated by GSH release from the 20 S core after reduction with NaBH(4). Moreover, cells pretreated with H(2)O(2) showed decreased reductive capacity assessed by determination of the GSH/oxidized glutathione ratio and increased protein carbonyl levels. The present results indicate that at the physiological level the yeast 20 S proteasome is regulated by its sulfhydryl content, thereby coupling intracellular redox signaling to proteasome-mediated proteolysis.  相似文献   

14.
The conserved RING-H2 finger of ROC1 is required for ubiquitin ligation   总被引:1,自引:0,他引:1  
ROC1 is a common component of a large family of ubiquitin E3 ligases that regulate cell cycle progression and signal transduction pathways. Here we present evidence suggesting that a conserved RING-H2 structure within ROC1 is critical for its ubiquitin ligation function. Mercury-containing sulfhydryl modification agents (rho-hydroxymercuribenzoate and mercuric chloride) irreversibly inhibit the ROC1-CUL1 ubiquitin ligase activity without disrupting the complex. Consistent with this, these reagents also eliminate the ability of the Skp1-CUL1-HOS-ROC1 E3 ligase complex to support the ubiquitination of IkappaBalpha. Site-directed mutagenesis analysis identifies RING-H2 finger residues Cys(42), Cys(45), Cys(75), His(77), His(80), Cys(83), Cys(94), and Asp(97) as being essential for the ROC1-dependent ubiquitin ligase activity. Furthermore, C42S/C45S and H80A mutations reduce the ability of ROC1 to interact with CUL1 in transfected cells and diminish the capacity of ROC1-CUL1 to form a stable complex with Cdc34 in vitro. However, C75S, H77A, C94S, and D97A substitutions have no detectable effect on ROC1 binding activities. Thus, the ROC1 RING-H2 finger may possess multiple biochemical properties that include stabilizing an interaction with CUL1 and recruiting Cdc34. A possible role of the RING finger in facilitating the Ub transfer reaction is discussed.  相似文献   

15.
Polyclonal antibodies were raised to a synthetic peptide whose amino acid sequence was derived from the novel gamma-aminobutyric acidA (GABAA) receptor subunit, gamma 2. These anti-gamma 2 1-15 Cys antibodies reacted specifically with the GABAA receptor purified from adult bovine cerebral cortex in an enzyme-linked immunosorbent assay. Anti-gamma 2 1-15 Cys antibodies specifically immunoprecipitated [3H]flunitrazepam photoaffinity-labeled native receptor in parallel with anti-alpha 1 324-341 antibodies. Immunoprecipitation of sodium dodecyl sulphate (SDS) denatured photoaffinity-labeled receptor by anti-gamma 2 1-15 Cys antibodies, however, resulted in a significant decrease in the maximum percentage of radioactivity immunoprecipitated compared to that by anti-alpha 1 324-341 antibodies. In immunoblots, anti-gamma 2 1-15 Cys antibodies reacted with a broad band in the molecular weight range Mr 43,000-49,000 which was distinct from that recognized by anti-alpha 1 324-341 antibodies. The anti-alpha 1 324-341 immunoreactive band was the main subunit irreversibly photoaffinity labeled by [3H]flunitrazepam, i.e. Mr 53,000. These results demonstrate for the first time that the gamma 2 subunit is an integral component of the GABAA receptor but it is the alpha 1 subunit that is the principal site of the agonist benzodiazepine photoaffinity labeling reaction. It supports a role of both the alpha 1 and gamma 2 polypeptides in the formation of the central benzodiazepine binding site within a GABAA receptor oligomer.  相似文献   

16.
We heterologously overproduced a hyperthermostable archaeal low potential (E(m) = -62 mV) Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus strain P-1 and its variants in Escherichia coli to examine the influence of ligand substitutions on the properties of the [2Fe-2S] cluster. While two cysteine ligand residues (Cys(42) and Cys(61)) are essential for the cluster assembly and/or stability, the contributions of the two histidine ligands to the cluster assembly in the archaeal Rieske-type ferredoxin appear to be inequivalent as indicated by much higher stability of the His(64) --> Cys variant (H64C) than the His(44) --> Cys variant (H44C). The x-ray absorption and resonance Raman spectra of the H64C variant firmly established the formation of a novel, oxidized [2Fe-2S] cluster with one histidine and three cysteine ligands in the archaeal Rieske-type protein moiety. Comparative resonance Raman features of the wild-type, natural abundance and uniformly (15)N-labeled ARF and its H64C variant showed significant mixing of the Fe-S and Fe-N stretching characters for an oxidized biological [2Fe-2S] cluster with partial histidine ligation.  相似文献   

17.
Chen D  Abend A  Stubbe J  Frey PA 《Biochemistry》2003,42(15):4578-4584
The adenosylcobalamin-dependent ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii catalyzes the reduction of ribonucleoside triphosphates to deoxyribonucleoside triphosphates. RTPR also catalyzes the exchange of the C5'-hydrogens of adenosylcobalalamin with solvent hydrogen. A thiyl radical located on Cys 408 is generated by reaction of adenosylcobalamin at the active site and is proposed to be the intermediate for both the nucleotide reduction and the 5'-hydrogen exchange reactions. In the present research, a stereochemical approach is used to study the mechanism of the Co-C5' bond cleavage of adenosylcobalamin in the reaction of RTPR. When stereoselectively deuterated coenzyme, (5'R)-[5'-(2)H(1)] adenosylcobalamin (5'R/S = 3:1), was incubated with RTPR or the Cys 408 viariants, C408A-RTPR and C408S-RTPR in the presence of dGTP, the deuterium at the 5'-carbon was stereochemically scrambled, leading to epimerization of the (5'S)-[5'-(2)H(1)]- and (5'R)-[5'-(2)H(1)]-isotopomers. Observation of epimerization with mutated RTPR proves that transient cleavage of the Co-C5' bond occurs in the absence of the thiol group on Cys 408. The rate constants for epimerization by RTPR, C408A-RTPR, and C408S-RTPRs in the presence of dGTP are 5.1, 0.28, and 0.42 s(-1), respectively. Only the wild-type RTPR catalyzes the 5'-hydrogen exchange reaction. Both epimerization and 5'-hydrogen exchange reactions are stimulated by the allosteric effector dGTP, and epimerization is not detected in the absence of the effector. Mechanistic implications with respect to wt-RTPR-mediated carbon cobalt bond homolysis and the intermediacy of the 5'-deoxyadenosyl radical will be presented.  相似文献   

18.
The oxido-redox status of plasma albumin in patients treated with hemodialysis was characterized with LC-ESI-MS/MS and was compared with models of oxidative stress. Oxidised albumin was characterized by sulfonation (SO3-) of the SH at Cys 34, unfolding and acidification of the molecule. Albumin in hemodialysis patients presented, instead, only intermediate oxidation products such as sulfenic (SO2), sulfonic (SO)and methionine sulfoxide (C5H9NO2S) involving Cys 165-269 and Met 329-548 but did not present SO3- at Cys 34. Absence of charge and structural alterations compared to the oxidised templates was also confirmed with electrophoretic titration and calorimetry. In conclusion, the oxido-redox status of plasma albumin in hemodialysis patients lacks the hallmarks of the advanced oxidation products. LC-ESI-MS/MS was crucial to characterize albumin in conditions of oxidation stress; surrogate techniques can mirror conformational changes induced by oxidation.  相似文献   

19.
Hydrogen sulfide (H(2)S) has recently emerged as a mammalian gaseous messenger molecule, akin to nitric oxide and carbon monoxide. H(2)S is predominantly formed from Cys or its derivatives by the enzymes cystathionine β-synthase and cystathionine γ-lyase. One of the mechanisms by which H(2)S signals is by sulfhydration of reactive Cys residues in target proteins. Although analogous to protein nitrosylation, sulfhydration is substantially more prevalent and usually increases the catalytic activity of targeted proteins. Physiological actions of sulfhydration include the regulation of inflammation and endoplasmic reticulum stress signalling as well as of vascular tension.  相似文献   

20.
Shi YY  Tang W  Hao SF  Wang CC 《Biochemistry》2005,44(5):1683-1689
Escherichia coli DnaJ, possessing both chaperone and thiol-disulfide oxidoreductase activities, is a homodimeric Hsp40 protein. Each subunit contains four copies of a sequence of -CXXCXGXG-, which coordinate with two Zn(II) ions to form an unusual topology of two C4-type zinc fingers, C144DVC147Zn(II)C197NKC200 (Zn1) and C161PTC164Zn(II)C183PHC186 (Zn2). Studies on five DnaJ mutants with Cys in Zn2 replaced by His or Ser (C183H, C186H, C161H/C183H, C164H/183H, and C161S/C164S) reveal that substitutions of one or two Cys residues by His or Ser have little effect on the general conformation and association property of the molecule. Replacement of two Cys residues by His does not interfere with the zinc coordination. However, replacement of two Cys by Ser results in a significant decrease in the proportion of coordinated Zn(II), although the unique zinc finger topology is retained. The mutants of C183H, C186H, and C161S/C164S display full disulfide reductase activity of wild-type DnaJ, while C161H/C183H and C164H/183H exhibit severe defect in the activity. All of the mutations do not substantially affect the chaperone activity. The results indicate that the motif of -CXXC- is critical to form an active site and indispensable to the thiol-disulfide oxidoreductase activity of DnaJ. Each -CXXC- motif in Zn2 but not in Zn1 functions as an active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号