首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
Modifications to DNA and histone tails represent key epigenetic marks involved in establishing and maintaining cell identity and can be dysregulated in human diseases, including cancer. Two such modifications, tri-methylation of lysine-27 on histone H3 (H3K27me3) mediated by the Polycomb complex and hydroxymethylation of cytosines on DNA, have recently been shown to be dynamically regulated during differentiation. Here, we show that global levels of 5-hydroxymethylcytosine (5hmC) and H3K27me3 are highly correlated across a variety of somatic tissues. In multiple hierarchically organized tissues, both marks showed almost identical cell-by-cell distribution patterns that exhibited a tight association with differentiation. In particular, tissue stem cell compartments were characterized by low levels of both marks, whereas differentiated cell compartments exhibited high levels of 5hmC and H3K27me3. This pattern of correlation between the two marks could be recapitulated in an in vitro model system of induced differentiation in prostate epithelial cells. While the correlation between 5hmC and H3K27me3 levels is also maintained in human cancers, the degree of correlation is reduced. These findings suggest a previously unappreciated link between 5hmC and H3K27me3 regulation that should be explored in future mechanistic studies.  相似文献   

2.
3.
《Theriogenology》2015,84(9):1408-1415
In vitro production of bovine embryos is a biotechnology of great economic impact. Epigenetic processes, such as histone remodeling, control gene expression and are essential for proper embryo development. Given the importance of IVP as a reproductive biotechnology, the role of epigenetic processes during embryo development, and the important correlation between culture conditions and epigenetic patterns, the present study was designed as a 2 × 2 factorial to investigate the influence of varying oxygen tensions (O2; 5% and 20%) and concentrations of fetal bovine serum (0% and 2.5%), during IVC, in the epigenetic remodeling of H3K9me2 (repressive) and H3K4me2 (permissive) in bovine embryos. Bovine oocytes were used for IVP of embryos, cleavage and blastocyst rates were evaluated, and expanded blastocysts were used for evaluation of the histone marks H3K9me2 and H3K4me2. Morulae and expanded blastocysts were also used to evaluate the expression of remodeling enzymes, specific to the aforementioned marks, by real-time polymerase chain reaction. Embryos produced in the presence of fetal bovine serum (2.5%) had a 10% higher rate of blastocyst formation. Global staining for the residues H3K9me2 and H3K4me2 was not affected significantly by the presence of serum. Notwithstanding, the main effect of oxygen tension was significant for both histone marks, with both repressive and permissive marks being higher in embryos cultured at the higher oxygen tension; however, expression of the remodeling enzymes did not differ in morulae or blastocysts in response to the varying oxygen tension. These results suggest that the use of serum during IVC of embryos increases blastocyst rate without affecting the evaluated histone marks and that oxygen tension has an important effect on the histone marks H3K9me2 and H3K4me2 in bovine blastocysts.  相似文献   

4.
Aging is accompanied by alterations in epigenetic marks that control chromatin states, including histone acetylation and methylation. Enzymes that reversibly affect histone marks associated with active chromatin have recently been found to regulate aging in Caenorhabditis elegans. However, relatively little is known about the importance for aging of histone marks associated with repressed chromatin. Here, we use a targeted RNAi screen in C. elegans to identify four histone demethylases that significantly regulate worm lifespan, UTX‐1, RBR‐2, LSD‐1, and T26A5.5. Interestingly, UTX‐1 belongs to a conserved family of histone demethylases specific for lysine 27 of histone H3 (H3K27me3), a mark associated with repressed chromatin. Both utx‐1 knockdown and heterozygous mutation of utx‐1 extend lifespan and increase the global levels of the H3K27me3 mark in worms. The H3K27me3 mark significantly drops in somatic cells during the normal aging process. UTX‐1 regulates lifespan independently of the presence of the germline, but in a manner that depends on the insulin‐FoxO signaling pathway. These findings identify the H3K27me3 histone demethylase UTX‐1 as a novel regulator of worm lifespan in somatic cells.  相似文献   

5.
Glioblastoma (GBM) is the most aggressive primary brain tumor in human. Recent studies on high-grade pediatric GBM have identified two recurrent mutations (K27M and G34R/V) in genes encoding histone H3 (H3F3A for H3.3 and HIST1H3B for H3.1).1,2 The two histone H3 mutations are mutually exclusive and give rise to tumors in different brain compartments.3 Recently, we4 and others5 have shown that the histone H3 K27M mutation specifically altered the di- and tri-methylation of endogenous histone H3 at Lys27. Genome-wide studies using ChIP-seq on H3.3K27M patient samples indicate a global reduction of H3K27me3 on chromatin. Remarkably, we also found a dramatic enrichment of H3K27me3 and EZH2 (the catalytic subunit H3K27 methyltransferase) at hundreds of gene loci in H3.3K27M patient cells. Here, we discuss potential mechanisms whereby H3K27me3 is enriched at chromatin loci in cells expressing the H3.3K27M mutation and report effects of Lys-to-Met mutations of other well-studied lysine residues of histone H3.1/H3.3 and H4 on the corresponding endogenous lysine methylation. We suggest that mutation(s) on histones may be found in a variety of human diseases, and the expression of mutant histones may help to address the function of histone lysine methylation and possibly other modifications in mammalian cells.  相似文献   

6.
组蛋白变体在基因表达等基本细胞过程中发挥重要调节功能。人类有5种H3变体,分别为H3.1、 H3.2、H3.3、着丝粒特异性CENP-A和睾丸特异性H3t。人H3.3有H3F3A和H3F3B两个基因编码。采用DNA全基因组测序的方法在儿童高级别胶质瘤如恶性胶质瘤(GBM)和弥漫性内在脑桥胶质瘤(DIPG)鉴定出高频的H3F3A突变。超过70%DIPG和30%GBM携带H3.3 K27M氨基酸错义突变(27位赖氨酸被甲硫氨酸代替)。H3.3 K27M通过与组蛋白H3K27甲基转移酶EZH2亚基相互作用而抑制多梳抑制复合物2(PRC2)活性并全面减少H3K27me3含量。因此H3.3 K27M突变重塑了表观修饰状态和基因表达模式,从而驱动肿瘤发生。K27M突变可作为分子标志物以更好区分儿童胶质瘤亚型,还可作为特异、敏感的预后标志物。通过抑制组蛋白去甲基化酶如JMJD3活性而增加H3K27甲基化可作为K27M突变胶质瘤治疗的有效策略。本文综述了组蛋白变体H3.3 K27M在胶质瘤中的突变模式、分子机制和临床应用。  相似文献   

7.
We analysed the distribution of histone H3 modifications in the nucleus of the vegetative cell (the vegetative nucleus) during pollen development in lily (Lilium longiflorum). Among the modifications specifically and/or abundantly present in the vegetative nucleus, dimethylation of histone H3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) were found in heterochromatin, whereas trimethylation of histone H3 at lysine 27 (H3K27me3) was localized in euchromatin in the vegetative nucleus. Such unique localization of the histone H3 methylation marks, particularly of H3K27me3, within a nucleus was not observed in lily nuclei other than the vegetative nucleus. The level of H3K27me3 increased in the euchromatic region of the vegetative nucleus during pollen maturation. The results suggest that H3K27me3 controls the gene expression of the vegetative cell during pollen maturation.  相似文献   

8.
Histone lysine methylation plays an important role in the regulation of ventricular remodelling. NSD2 is involved in many types of tumours through enhancing H3K36me2 expression. However, the role of NSD2 in the regulation of histone lysine methylation during ventricular remodelling remains unclear. In this study, we established cardiac hypertrophy model in C57BL/6 mice by transverse aortic constriction and found that histone lysine methylation participated in ventricular remodelling regulation via the up‐regulation of H3K27me2 and H3K36me2 expression. In addition, we constructed transgenic C57BL/6 mice with conditional knockout of NSD2 (NSD2?/?) in the myocardium. NSD2?/? C57BL/6 mice had milder ventricular remodelling and significantly improved cardiac function compared with wild‐type mice, and the expression of H3K36me2 but not H3K27me2 was down‐regulated. In conclusion, NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2.  相似文献   

9.
Context: Histone modifications regulate gene expression; dysregulation has been linked with cardiovascular diseases. Associations between histone modification levels and blood pressure in humans are unclear.

Objective: We examine the relationship between global histone concentrations and various markers of blood pressure.

Materials and methods: Using the Beijing Truck Driver Air Pollution Study, we investigated global peripheral white blood cell histone modifications (H3K9ac, H3K9me3, H3K27me3, and H3K36me3) associations with pre- and post-work measurements of systolic (SBP) and diastolic (DBP) blood pressure, mean arterial pressure (MAP), and pulse pressure (PP) using multivariable mixed-effect models.

Results: H3K9ac was negatively associated with pre-work SBP and MAP; H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP; and H3K27me3 was negatively associated with pre-work SBP. Among office workers, H3K9me3 was negatively associated with pre-work SBP, DBP, and MAP. Among truck drivers, H3K9ac and H3K27me were negatively associated with pre-work SBP, and H3K27me3 was positively associated with post-work PP.

Discussion and conclusion: Epigenome-wide H3K9ac, H3K9me3, and H3K27me3 were negatively associated with multiple pre-work blood pressure measures. These associations substantially changed during the day, suggesting an influence of daily activities. Blood-based histone modification biomarkers are potential candidates for studies requiring estimations of morning/pre-work blood pressure.  相似文献   


10.
11.
12.
Epigenetic regulation controls multiple aspects of the plant development. The N-terminal tail of histone can be differently modified to regulate various chromatin activities. One of them, the trimethylation of histone H3 lysine 27 (H3K27me3) confers a repressive chromatin state with gene silencing. H3K27me3 is dynamically deposited and removed throughout development. While components of the H3K27me3 writer, Polycomb repressive complex 2 (PRC2), have been reported for almost 2 decades, it is only recently that JUMONJI (JMJ) proteins are reported as H3K27me3 demethylases, affirming the dynamic nature of histone modifications. This review highlights recent progress in plant epigenetic research, focusing on the H3K27me3 demethylases.  相似文献   

13.
14.
Understanding cellular and molecular damages in oocytes during exposure to extreme conditions is essential to optimize long‐term fertility preservation approaches. Using the domestic cat (Felis catus) model, we are developing drying techniques for oocytes’ germinal vesicles (GVs) as a more economical alternative to cryopreservation. The objective of the study was to characterize the influence of desiccation on nuclear envelope conformation, chromatin configuration, and the relative fluorescent intensities of histone H3 trimethylation at lysine 4 (H3K4me3) and at lysine 9 (H3K9me3) compared to vitrification. Results showed that higher proportions of dried/rehydrated GVs maintained normal nuclear envelope conformation and chromatin configuration than vitrified/warmed counterparts. Both preservation methods had a similar influence on epigenetic patterns, lowering H3K4me3 intensity to under 40% while maintaining H3K9me3 levels. Further analysis revealed that the decrease of H3K4me3 intensity mainly occurred during microwave dehydration and subsequent rehydration, whereas sample processing (permeabilization and trehalose exposure) or storage did not significantly affect the epigenetic marker. Moreover, rehydration either directly or stepwise with trehalose solutions did not influence the outcome. This is the first report demonstrating that the incidence of GV damages is lower after desiccation/rehydration than vitrification/warming.  相似文献   

15.
16.
17.
18.
Bread wheat (Triticum aestivum) is an allohexaploid that was formed via two allopolyploidization events. Growing evidence suggests histone modifications are involved in the response to ‘genomic shock’ and environmental adaptation during polyploid formation and evolution. However, the role of histone modifications, especially histone H3 lysine-27 dimethylation (H3K27me2), in genome evolution remains elusive. Here we analyzed H3K27me2 and H3K27me3 profiles in hexaploid wheat and its tetraploid and diploid relatives. Although H3K27me3 levels were relatively stable among wheat species with different ploidy levels, H3K27me2 intensities increased concurrent with increased ploidy levels, and H3K27me2 peaks were colocalized with massively amplified DTC transposons (CACTA family) in euchromatin, which may silence euchromatic transposons to maintain genome stability during polyploid wheat evolution. Consistently, the distribution of H3K27me2 is mutually exclusive with another repressive histone mark, H3K9me2, that mainly silences transposons in heterochromatic regions. Remarkably, the regions with low H3K27me2 levels (named H3K27me2 valleys) were associated with the formation of DNA double-strand breaks in genomes of wheat, maize (Zea mays) and Arabidopsis. Our results provide a comprehensive view of H3K27me2 and H3K27me3 distributions during wheat evolution, which support roles for H3K27me2 in silencing euchromatic transposons to maintain genome stability and in modifying genetic recombination landscapes. These genomic insights may empower breeding improvement of crops.  相似文献   

19.
As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain, including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and H3 lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased H3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1–10 μM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a two-fold increase observed at 10 μM compared to vehicle-treated control cells. Moreover, pretreatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel nonopioid therapeutics for the effective management of chronic pain.  相似文献   

20.
Epigenetic dysregulation plays an important role in cancer. Histone demethylation is a well‐known mechanism of epigenetic regulation that promotes or inhibits tumourigenesis in various malignant tumours. However, the pathogenic role of histone demethylation modifiers in papillary thyroid cancer (PTC), which has a high incidence of early lymphatic metastasis, is largely unknown. Here, we detected the expression of common histone demethylation modifiers and found that the histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) demethylase KDM1A (or lysine demethylase 1A) is frequently overexpressed in PTC tissues and cell lines. High KDM1A expression correlated positively with age <55 years and lymph node metastasis in patients with PTC. Moreover, KDM1A was required for PTC cell migration and invasion. KDM1A knockdown inhibited the migration and invasive abilities of PTC cells both in vitro and in vivo. We also identified tissue inhibitor of metalloproteinase 1 (TIMP1) as a key KDM1A target gene. KDM1A activated matrix metalloproteinase 9 (MMP9) through epigenetic repression of TIMP1 expression by demethylating H3K4me2 at the TIMP1 promoter region. Rescue experiments clarified these findings. Altogether, we have uncovered a new mechanism of KDM1A repression of TIMP1 in PTC and suggest that KDM1A may be a promising therapeutic target in PTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号