首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Background  

Phosphoenolpyruvate carboxylase (PEPC) is a critical enzyme catalyzing the β-carboxylation of phosphoenolpyruvate (PEP) to oxaloacetate, a tricarboxylic acid (TCA) cycle intermediate. PEPC typically exists as a Class-1 PEPC homotetramer composed of plant-type PEPC (PTPC) polypeptides, and two of the subunits were reported to be monoubiquitinated in germinating castor oil seeds. By the large-scale purification of ubiquitin (Ub)-related proteins from lily anther, two types of PEPCs, bacterial-type PEPC (BTPC) and plant-type PEPC (PTPC), were identified in our study as candidate Ub-related proteins. Until now, there has been no information about the properties of the PEPCs expressed in male reproductive tissues of higher plants.  相似文献   

2.
The excretion of the aromatic amino acid l-tyrosine was achieved by manipulating three gene targets in the wild-type Escherichia coli K12: The feedback-inhibition-resistant (fbr) derivatives of aroG and tyrA were expressed on a low-copy-number vector, and the TyrR-mediated regulation of the aromatic amino acid biosynthesis was eliminated by deleting the tyrR gene. The generation of this l-tyrosine producer, strain T1, was based only on the deregulation of the aromatic amino acid biosynthesis pathway, but no structural genes in the genome were affected. A second tyrosine over-producing strain, E. coli T2, was generated considering the possible limitation of precursor substrates. To enhance the availability of the two precursor substrates phosphoenolpyruvate and erythrose-4-phosphate, the ppsA and the tktA genes were over-expressed in the strain T1 background, increasing l-tyrosine production by 80% in 50-ml batch cultures. Fed-batch fermentations revealed that l-tyrosine production was tightly correlated with cell growth, exhibiting the maximum productivity at the end of the exponential growth phase. The final l-tyrosine concentrations were 3.8 g/l for E. coli T1 and 9.7 g/l for E. coli T2 with a yield of l-tyrosine per glucose of 0.037 g/g (T1) and 0.102 g/g (T2), respectively.  相似文献   

3.
Efficient Agrobacterium -mediated transformation of Antirrhinum majus L. was achieved via indirect shoot organogenesis from hypocotyl explants of seedlings. Stable transformants were obtained by inoculating explants with A. tumefaciens strain GV2260 harboring the binary vector pBIGFP121, which contains the neomycin phosphotransferase gene (NPT II) as a selectable marker and the gene for the Green Fluorescent Protein (GFP) as a visual marker. Putative transformants were identified by selection for kanamycin resistance and by examining the shoots using fluorescence microscopy. PCR and Southern analyses confirmed integration of the GFP gene into the genomes of the transformants. The transformants had a morphologically normal phenotype. The transgene was shown to be inherited in a Mendelian manner. This improved method requires only a small number of seeds for explant preparation, and three changes of medium; the overall transformation efficiency achieved, based on the recovery of transformed plants after 4–5 months of culture, reached 8–9%. This success rate makes the protocol very useful for producing transgenic A. majus plants.Communicated by G. Jürgens  相似文献   

4.
Murmu J  Plaxton WC 《Planta》2007,226(5):1299-1310
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) protein kinase (PPCK) was purified ∼1,500-fold from developing castor oil seeds (COS). Gel filtration and immunoblotting with anti-(rice PPCK2)-immune serum indicated that this Ca2+-insensitive PPCK exists as a 31-kDa monomer. COS PPCK-mediated rephosphorylation of the 107-kDa subunit (p107) of COS PEPC1 (K m = 2.2 μM) activated PEPC1 by ∼80% when assayed under suboptimal conditions (pH 7.3, 0.2 mM PEP, and 0.125 mM malate). COS PPCK displayed remarkable selectivity for phosphorylating COS PEPC1 (relative to tobacco, sorghum, or maize PEPCs), exhibited a broad pH-activity optima of ∼pH 8.5, and at pH 7.3 was activated 40–65% by 1 mM PEP, or 10 mM Gln or Asn, but inhibited 65% by 10 mM L-malate. The possible control of COS PPCK by disulfide-dithiol interconversion was suggested by its rapid inactivation and subsequent reactivation when incubated with oxidized glutathione and then dithiothreitol. In vitro PPCK activity correlated with in vivo p107 phosphorylation status, with both peaking in mid-cotyledon to full-cotyledon developing COS. Notably, PPCK activity and p107 phosphorylation of developing COS were eliminated following pod excision or prolonged darkness of intact plants. Both effects were fully reversed 12 h following reillumination of darkened plants. These results implicate a direct relationship between the up-regulation of COS PPCK and p107 phosphorylation during the recommencement of photosynthate delivery from illuminated leaves to the non-photosynthetic COS. Overall, the results support the hypothesis that PEPC and PPCK participate in the control of photosynthate partitioning into C-skeletons needed as precursors for key biosynthetic pathways of developing COS. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies.  相似文献   

6.
7.
We developed an efficient gene transfer method mediated by Agrobacterium tumefaciens for introgression of new rice for Africa (NERICA) cultivars, which are derivatives of interspecific hybrids between Oryza glaberrima Steud. and O. sativa L. Freshly isolated immature embryos were inoculated with A. tumefaciens LBA4404 that harbored binary vector pBIG-ubi::GUS or pIG121Hm, which each carried a hygromycin-resistance gene and a GUS gene. Growth medium supplemented with 500 mg/l cefotaxime and 20 mg/l hygromycin was suitable for elimination of bacteria and selection of transformed cells. Shoots regenerated from the selected cells on MS medium containing 20 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acids, 0.25 mg/l naphthaleneacetic acid, 2.5 mg/l kinetin, 250 mg/l cefotaxime, and 20 mg/l hygromycin. The shoots developed roots on hormone-free MS medium containing 30 mg/l hygromycin. Integration and expression of the transgenes were confirmed by PCR, Southern blot analysis, and histochemical GUS assay. Stable integration, expression, inheritance, and segregation of the transgenes were demonstrated by molecular and genetic analyses in the T0 and T1 generations. Most plants were normal in morphology and fertile. The transformation protocol produced stable transformants from 16 NERICA cultivars. We also obtained transformed plants by inoculation of calluses derived from mature seeds, but the frequency of transformation was lower and sterility was more frequent.  相似文献   

8.
Agrobacterium tumefaciens has the ability to transfer its T-DNA to plants, yeast, filamentous fungi, and human cells and integrate it into their genome. Conidia of the maize pathogen Helminthosporium turcicum were transformed to hygromycin B resistance by a Agrobacterium-tumefaciens-mediated transformation system using a binary plasmid vector containing the hygromycin B phosphotransferase (hph) and the enhanced green fluorescent protein (EGFP) genes controlled by the gpd promoter from Agaricus bisporus and the CaMV 35S terminator. Agrobacterium-tumefaciens-mediated transformation yielded stable transformants capable of growing on increased concentrations of hygromycin B. The presence of hph in the transformants was confirmed by PCR, and integration of the T-DNA at random sites in the genome was demonstrated by Southern blot analysis. Agrobacterium-tumefaciens-mediated transformation of Helminthosporium turcicum provides an opportunity for advancing studies of the molecular genetics of the fungus and of the molecular basis of its pathogenicity on maize.  相似文献   

9.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at 27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants.  相似文献   

10.
Li X  Wang XD  Zhao X  Dutt Y 《Plant cell reports》2004,22(9):691-697
A novel method for the genetic transformation of cotton pollen by means of vacuum infiltration and Agrobacterium-mediated transformation is reported. The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants. Transformation was carried out in cotton pollen-germinating medium, and transformation was mediated by vector pCAMBIA1301, which contains a reporter gene -glucuronidase (GUS), a selectable marker gene, hpt, for hygromycin resistance and the genes of interest, acsA and acsB. The integration and expression of acsA, acsB and GUS in the genome of transgenic plants were analyzed with Southern blot hybridization, PCR, histochemical GUS assay and Northern blot hybridization. We found that following pollination on the cotton stigma transformed pollen retained its capability of double-fertilization and that normal cotton seeds were produced in the cotton ovary. Of 1,039 seeds from 312 bolls pollinated with transformed pollen grains, 17 were able to germinate and grow into seedlings for more than 3 weeks in a nutrient medium containing 50 mg/l hygromycin; eight of these were transgenic plants integrated with acsA and acsB, yielding a 0.77% transformation rate. Fiber strength and length from the most positive transformants was 15% greater than those of the control (non-transformed), a significant difference, as was cellulose content between the transformed and control plants. Our study suggests that transformation through vacuum infiltration and Agrobacterium mediated transformation can be an efficient way to introduce foreign genes into the cotton pollen grain and that cotton fiber quality can be improved with the incorporation of the prokaryotic genes acsA and acsB.Communicated by D. Bartels  相似文献   

11.
In the present paper we investigated the effect of heterologous expression of a rat liver ketohexokinase in potato (Solanum tuberosum L.) plants with the aim of investigating the role of fructose 1-phosphate in plant metabolism. Plants were generated that contained appreciable activity of ketohexokinase but did not accumulate fructose 1-phosphate. They were, however, characterised by a severe growth retardation and abnormal leaf development. Studies of 14CO2 assimilation and metabolism, and of the levels of photosynthetic pigments, revealed that these lines exhibited restricted photosynthesis. Despite this fact, the levels of starch and soluble sugars remained relatively constant. Analysis of intermediates of starch and sucrose biosynthesis revealed large increases in the triose phosphate and fructose 1,6-bisphosphate pools but relatively unaltered levels of inorganic phosphate and 3-phosphoglycerate, and these lines were also characterised by an accumulation of glyceraldehyde. The transformants neither displayed consistent changes in the activities of Calvin cycle enzymes nor in enzymes of sucrose synthesis but displayed a metabolic profile partially reminiscent of that brought about by end-product limitation, but most likely caused by an inhibition of photosynthesis brought about by the accumulation of glyceraldehyde. Analysis of the metabolite contents in lamina and vein fractions of the leaf, and of the enzymes of carbohydrate oxidation indicate that the phloem-enriched veins of ketohexokinase-expressing leaves tend toward hypoxia and indicate a problem of phloem transport.Abbreviations CaMV Cauliflower mosaic virus - DHAP Dihydroxyacetone phosphate - F1P Fructose 1-phosphate - FBP Fructose 1,6-bisphosphate - KHK Ketohexokinase - NADP-GAPdH NADP-dependent glyceraldehyde-3-phosphate dehydrogenase - PFP Pyrophosphate: fructose 6-phosphate 1-phosphotransferase - 3PGA 3-Phosphoglycerate - PEP Phosphoenolpyruvate - Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase - SPS Sucrose phosphate synthase - SuSy Sucrose synthase  相似文献   

12.
AsAgrobacterium tumefaciens, which has long been used to transform plants, is known to transfer T-DNA to budding yeast,Saccharomyces cerevisiae, a variety of fungi were subjected to theA. tumefaciens-mediated transformation to improve their transformation frequency and feasibility. TheA. tumefaciens-mediated transformation of chestnut blight fungus,Cryphonectria parasitica, is performed in this study as the first example of transformation of a hardwood fungal pathogen. The transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of theAspergillus nidulans trpC promoter and terminator, as a selectable marker, led to the selection of more than 1,000 stable, hygromycin B-resistant transformants per 1×106 conidia ofC. parasitica. The putative transformants appeared to be mitotically stable. The transformation efficiency appears to depend on the bacterial strain, age of the bacteria cell culture and ratio of fungal spores to bacterial cells. PCR and Southern blot analysis indicated that the marker gene was inserted at different chromosomal sites. Moreover, three transformants out of ten showed more than two hybridizing bands, suggesting more than two copies of the inserted marker gene are not uncommon.  相似文献   

13.
The present study aimed to obtain analgesic-antitumor peptide (AGAP) gene expression in plants. The analgesic-antitumor peptide (AGAP) gene was from the venom of Buthus martensii Karsch. Previous studies showed that AGAP has both analgesic and antitumor activities, suggesting that AGAP would be useful in clinical situations as an antitumor drug. Given that using a plant as an expression vector has more advantages than prokaryotic expression, we tried to obtain transgenic plants containing AGAP. In the present study, the AGAP gene was cloned into the plasmid pBI121 to obtain the plant expression vector pBI-AGAP. By tri-parental mating and freeze–thaw transformation, pBI-AGAP was transformed into Agrobacterium tumefaciens LBA4404. Tobacco (Nicotiana tabacum) and tomato (Lycopersicom esculentum) were transformed by the method of Agrobacterium-mediated leaf disc transformation. The transformants were then screened to grow and root on media containing kanamycin. Finally, transformations were confirmed by analysis of PCR, RT-PCR and western blotting. The results showed that the AGAP gene was integrated into the genomic DNA of tobacco and tomato and was successfully expressed. Therefore, the present study suggests a potential industrial application of AGAP expressed in plants.  相似文献   

14.
With untransformed rice cv. Kitaake as control, the characteristics of carbon assimilation and photoprotection of a transgenic rice line over-expressing maize phosphoenolpyruvate carboxylase (PEPC) were investigated. The PEPC activity in untransformed rice was low, but the activity was stimulated under high irradiance or photoinhibitory condition. PEPC in untransformed rice contributed by about 5–10 % to photosynthesis, as shown by the application of the specific inhibitor 3,3-dichloro-2-(dihydroxyphosphinoylmethyl)propenoate (DCDP). When maize PEPC gene was introduced into rice, transgenic rice expressed high amount of maize PEPC protein and had high PEPC activity. Simultaneously, the activity of carbonic anhydrase (CA) transporting CO2 increased significantly. Thus the photosynthetic capacity increased greatly (50 %) under high CO2 supply. In CO2-free air, CO2 release in the leaf was less. In addition, PEPC transgenic rice was more tolerant to photoinhibition. Treating by NaF, an inhibitor of phosphatase, showed that in transgenic rice more phosphorylated light-harvesting chlorophyll a/b-binding complexes (LHC) moved to photosystem 1 (PS1) protecting thus PS2 from photo-damage. Simultaneously, the introduction of maize PEPC gene could activate or induce activities of the key enzymes scavenging active oxygen, such as superoxide dismutase (SOD) and peroxidase (POD). Hence higher PS2 photochemical efficiency and lower superoxygen anion (O2 ·−) generation and malonyldiadehyde (MDA) content under photoinhibition could improve protection from photo-oxidation.  相似文献   

15.
Corynebacterium glutamicum strains are used for the fermentative production of l-glutamate. Five C. glutamicum deletion mutants were isolated by two rounds of selection for homologous recombination and identified by Southern blot analysis. The growth, glucose consumption and glutamate production of the mutants were analyzed and compared with the wild-type ATCC 13032 strain. Double disruption of dtsR1 (encoding a subunit of acetyl-CoA carboxylase complex) and pyc (encoding pyruvate carboxylase) caused efficient overproduction of l-glutamate in C. glutamicum; production was much higher than that of the wild-type strain and ΔdtsR1 strain under glutamate-inducing conditions. In the absence of any inducing conditions, the amount of glutamate produced by the double-deletion strain ΔdtsR1Δpyc was more than that of the mutant ΔdtsR1. The activity of phosphoenolpyruvate carboxylase (PEPC) was found to be higher in the ΔdtsR1Δpyc strain than in the ΔdtsR1 strain and the wild-type strain. Therefore, PEPC appears to be an important anaplerotic enzyme for glutamate synthesis in ΔdtsR1 derivatives. Moreover, this conclusion was confirmed by overexpression of ppc and pyc in the two double-deletion strains (ΔdtsR1Δppc and ΔdtsR1Δpyc), respectively. Based on the data generated in this investigation, we suggest a new method that will improve glutamate production strains and provide a better understanding of the interaction(s) between the anaplerotic pathway and fatty acid synthesis.  相似文献   

16.
Summary We describe an in vitro propagation protocol for Zingiber petiolatum (Holttum), I. Theilade, a rare species from the southern part of Thailand. Fruits were surface-sterilized and seeds germinated on Murashige and Skoog medium (MS) medium supplemented with 3% sucrose. Three-month-old seedlings were used as initial plant material for in vitro propagation. Terminal buds of the plants were inoculated on MS medium containing 6-benzylaminopurine (BA; 2.2–35.5 μM) alone or in combination with 1-naphthaleneacetic acid (0.5 μM). Eight weeks after inoculation, the cultures were transferred to MS medium without plant growth regulators for 4wk. The cultures transferred from MS medium with 17.8 μM BA revealed the highest shoot induction rate of 6.1±0.7 shoots per explant. Rooting was spontaneously achieved in MS medium without plant growth regulators. Rooted plants were successfully transplanted to soil.  相似文献   

17.
The foodborne pathogen Bacillus cereus can form biofilms on various food contact surfaces, leading to contamination of food products. To study the mechanisms of biofilm formation by B. cereus, a Tn5401 library was generated from strain UW101C. Eight thousand mutants were screened in EPS, a low nutrient medium. One mutant (M124), with a disruption in codY, developed fourfold less biofilm than the wild-type, and its defective biofilm phenotype was rescued by complementation. Addition of 0.1% casamino acids to EPS prolonged the duration of biofilms in the wild-type but not codY mutant. When decoyinine, a GTP synthesis inhibitor, was added to EPS, biofilm formation was decreased in the wild-type but not the mutant. The codY mutant produced three times higher protease activity than the wild-type. Zymogram and SDS-PAGE data showed that production of the protease (∼130 kDa) was repressed by CodY. Addition of proteinase K to EPS decreased biofilm formation by the wild-type. Using a dpp-lacZ fusion reporter system, it was shown that that the B. cereus CodY can sense amino acids and GTP levels. These data suggest that by responding to amino acids and intracellular GTP levels CodY represses production of an unknown protease and is involved in biofilm formation.  相似文献   

18.
A single MAT1-2-1 gene was identified from a mating pair of the filamentous ascomycete Colletotrichum lindemuthianum. The MAT1-2-1 genes from both mating partners carried an open reading frame (ORF) of 870 bp encoding a putative protein of 290 amino acids that includes the highly conserved high mobility group (HMG) domain typical of the fungal MAT1-2-1 genes. Three introns were confirmed within the C. lindemuthianum ORF, two of which were found to be conserved relative to a previously reported MAT1-2-1 gene from C. gloeosporioides. The amino acid sequence of the HMG domain from C. lindemuthianum MAT1-2-1 was also compared with those from other ascomycetes. These results suggest that although the MAT1-2-1 genes are highly conserved among ascomycetes, the mechanism which defines mating partners in the genus Colletotrichum is distinct to the idiomorph system described for other members of this phylum.  相似文献   

19.
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering.  相似文献   

20.
Genetic engineering of a wide variety of plant species has led to the improvement of plant traits. In this study, the genetic transformation of two potentially important flowering ornamentals, Melastoma malabathricum and Tibouchina semidecandra, with sense and antisense dihydroflavonol-4-reductase (DFR) genes using the Agrobacterium-mediated method was carried out. Plasmids pBETD10 and pBETD11, each harbouring the DFR gene at different orientations (sense and antisense) and selectable marker nptII for kanamycin resistance, were used to transform M. malabathricum and T. semidecandra under the optimized transformation protocol. Putative transformants were selected in the presence of kanamycin with their respective optimized concentration. The results indicated that approximately 4.0% of shoots and 6.7% of nodes for M. malabathricum regenerated after transforming with pBETD10, whereas only 3.7% (shoots) and 5.3% (nodes) regenerated with pBETD11 transformation. For the selection of T. semidecandra, 5.3% of shoots and 9.3% of nodes regenerated with pBETD10 transformation, while only 4.7% (shoots) and 8.3% (nodes) regenerated after being transformed with pBETD11. The presence and integration of the sense and antisense DFR genes into the genome of M. malabathricum and T. semidecandra were verified by polymerase chain reaction (PCR) and nucleotide sequence alignment and confirmed by southern analysis. The regenerated putative transformants were acclimatized to glasshouse conditions. Approximately 31.0% pBETD10-transformed and 23.1% pBETD11-transformed M. malabathricum survived in the glasshouse, whereas 69.4% pBETD10-transformed and 57.4% pBETD11-transformed T. semidecandra survived. The colour changes caused by transformation were observed at the budding stage of putative T. semidecandra transformants where greenish buds were produced by both T. semidecandra harbouring the sense and antisense DFR transgenes. Besides that, the production of four-petal flowers also indicated another morphological difference of putative T. semidecandra transformants from the wild type plants which produce five-petal flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号