首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A Sebacinales species was recovered from a clone library made from a pooled rhizosphere sample of Nicotiana attenuata plants from 14 native populations. Axenic cultures of the related species, Piriformospora indica and Sebacina vermifera, were used to examine their effects on plant performance. Inoculation of N. attenuata seeds with either fungus species stimulated seed germination and increased growth and stalk elongation. S. vermifera inoculated plants flowered earlier, produced more flowers and matured more seed capsules than did non-inoculated plants. Jasmonate treatment during rosette-stage growth, which slows growth and elicits herbivore resistance traits, erased differences in vegetative, but not reproductive performance resulting from S. vermifera inoculation. Total nitrogen and phosphorous contents did not differ between inoculated and control plants, suggesting that the performance benefits of fungal inoculation did not result from improvements in nutritional status. Since the expression of trypsin proteinase inhibitors (TPI), defensive proteins which confer resistance to attack from Manduca sexta larvae, incur significant growth and fitness costs for the plant, we examined the effect of S. vermifera inoculation on herbivore resistance and TPI activity. After 10 days of feeding on S. vermifera-inoculated plants, larval mass was 46% higher and TPI activity was 48% lower than that on non-inoculated plants. These results suggest that Sebacina spp. may interfere with defense signaling and allow plants to increase growth rates at the expense of herbivore resistance mediated by TPIs.  相似文献   

3.
Potato late blight disease, which is caused by the fungus Phytophthora infestans, results in considerable loss of potato crop yield worldwide. Developing new bio-agents to control this disease is desirable. Xenocoumacin 1 (Xcn1) is an antibacterial substance from the entomopathogenic nematode symbiotic bacterium, Xenorhabdus nematophila var. pekingensis. In this study, we evaluated the antifungal activity of Xcn1, along with its potential activity against Phytophthora infestans, in vitro and in vivo. The results showed that Xcn1 exhibits strong antifungal activity against five species of Phytophthora, with EC50 values ranging from 0.25 to 4.17 μg/mL. Xcn1 not only inhibited mycelial growth of P. infestans, reaching 100% inhibition at 1.5 μg/mL of Xcn1, but also suppressed sporangia production. Xcn1 also showed potent in vivo activity against P. infestans, with 92.63% and 80.27% in detached plants and potted plants, respectively, in comparison with the control. Therefore, Xcn1 has antibiotic activities against P. infestans both in vitro and in vivo.  相似文献   

4.
Human beta-defensin-2 (hBD-2) is a small antimicrobial peptide with potent activity against different Gram-negative bacteria and fungal/yeast species. Since human beta-defensins and plant defensins share structural homology, we set out to analyse whether there also exists a functional homology between these defensins of different eukaryotic kingdoms. To this end, we constructed a plant transformation vector harbouring the hBD-2 coding sequence, which we transformed to Arabidopsis thaliana plants, giving rise to A. thaliana plants indeed expressing hBD-2. Furthermore, we could demonstrate that this heterologously produced hBD-2 possesses antifungal activity in vitro. Finally, we could show that hBD-2 expressing A. thaliana plants are more resistant against the broad-spectrum fungal pathogen Botrytis cinerea as compared to untransformed A. thaliana plants, and that this resistance is correlated with the level of active hBD-2 produced in these transgenic plants. Hence, we demonstrated a functional homology, next to the already known structural homology, between defensins originating from different eukaryotic kingdoms. To our knowledge, this is the first time that this is specifically demonstrated for plant and mammalian defensins.  相似文献   

5.
6.
The thale cress, Arabidopsis thaliana, is considered to be an important model species in studying a suite of evolutionary processes. However, the species has been criticized on the basis of its comparatively small size at maturity (and consequent limitations in the amount of available biomass for herbivores) and on the duration and timing of its life cycle in nature. In the laboratory, we studied interactions between A. thaliana and the cabbage butterfly, Pieris rapae, in order to determine if plants are able to support the complete development of the herbivore. Plants were grown in pots from seedlings in densities of one, two, or four per pot. In each treatment, one, two, or five newly hatched larvae of P. rapae were placed on fully developed rosettes of A. thaliana. In a separate experiment, the same densities of P. rapae larvae were reared from hatching on single mature cabbage (Brassica oleracea) plants. Pupal fresh mass and survival of P. rapae declined with larval density when reared on A. thaliana but not on B. oleracea. However, irrespective of larval density and plant number, some P. rapae were always able to complete development on A. thaliana plants. A comparison of the dry mass of plants in different treatments with controls (= no larvae) revealed that A. thaliana partially compensated for plant damage when larval densities of P. rapae were low. By contrast, single cress plants with 5 larvae generally suffered extensive damage, whereas damage to B. oleracea plants was negligible. Rosettes of plants that were monitored in spring, when A. thaliana naturally grows, were not attacked by any insect herbivores, but there was often extensive damage from pulmonates (slugs and snails). Heavily damaged plants flowered less successfully than lightly damaged plants. Small numbers of generalist plant-parasitic nematodes were also recovered in roots and root soil. By contrast, plants monitored in a sewn summer plot were heavily attacked by insect herbivores, primarily flea beetles (Phyllotreta spp.). These results reveal that, in natural populations of A. thaliana, there is a strong phenological mismatch between the plant and most of its potential specialist insect herbivores (and their natural enemies). However, as the plant is clearly susceptible to attack from non-insect generalist invertebrate herbivores early in the season, these may be much more suitable for studies on direct defense strategies in A. thaliana.  相似文献   

7.
Elicitins, extracellular proteins from Phytophthora fungi, elicit a hypersensitivity response (HR), including systemic acquired resistance, in some plants. The elicitin capsicein (~10 kDa) was purified by FPLC from culture filtrates of P. capsici. Purified native and recombinant capsicein induced a hypersensitive response in leaves of the non-host plants Nicotiana glutinosa and Brassica rapa subsp. pekinensis. To search for candidate capsicein-interacting proteins from N. glutinosa, a yeast two-hybrid assay was used. We identified a protein interactor that is homologous to a serine/threonine kinase of the plant receptor-like kinase (RLK) group and designated it NgRLK1. The ORF of NgRLK1 encodes a polypeptide of 832 amino acids (93,490 Da). A conserved domain analysis revealed that NgRLK1 has structural features typical of a plant RLK. NgRLK1 was autophosphorylated, with higher activity in the presence of Mn2+ than Mg2+.  相似文献   

8.
9.
Pythium and Phytophthora species are associated with damping-off diseases in vegetable nurseries and reduce seedling stand and yield. In this study, bacterial isolates were selected on the basis of in vitro antagonism potential to inhibit mycelial growth of damping-off pathogens along with plant growth properties for field assessment in wet and winter seasons. We demonstrate efficacy of bacterial isolates to protect chile and tomato plants under natural vegetable nursery and artificially created pathogen-infested (Pythium and Phytophthora spp.) nursery conditions. After 21 days of sowing, chile and tomato plants were harvested and analysed for peroxidase and phenylalanine ammonia-lyase activities. Pseudomonas sp. strains FQP PB-3, FQA PB-3 and GRP3 were most effective in increasing shoot length (P > 0.05%) in both artificial and natural field sites. For example, Pseudomonas sp. FQA PB-3 treatment increased shoot length by 40% in the artificial Pythium 4746 infested nursery site in chile plants in the wet season. The bacterial treatments significantly increased the activity of peroxidase and phenylalanine ammonia-lyase in chile and tomato plant tissues, which are well known as indicators of an active lignification process. Thus, we conclude that treatment with potential bacterial plant growth promoting agents help plants against pathogen invasion by modulating plant peroxidase and phenylalanine ammonia-lyase activities.  相似文献   

10.
Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance (SAR), ISR is not associated with systemic changes in the expression of genes encoding pathogenesis-related (PR) proteins. To identify genes that are specifically expressed in response to colonization of the roots by ISR-inducing Pseudomonas fluorescens WCS417r bacteria, we screened a collection of Arabidopsis enhancer trap and gene trap lines containing a transposable element of the Ac/Ds system and the GUS reporter gene. We identified an enhancer trap line (WET121) that specifically showed GUS activity in the root vascular bundle upon colonization of the roots by WCS417r. Fluorescent Pseudomonas spp. strains P. fluorescens WCS374r and P. putida WCS358r triggered a similar expression pattern, whereas ISR-non-inducing Escherichia coli bacteria did not. Exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) mimicked the rhizobacteria-induced GUS expression pattern in the root vascular bundle, whereas methyl jasmonic acid and salicylic acid did not, indicating that the Ds element in WET121 is inserted in the vicinity of an ethylene-responsive gene. Analysis of the expression of the genes in the close vicinity of the Ds element revealed AtTLP1 as the gene responsible for the in cis activation of the GUS reporter gene in the root vascular bundle. AtTLP1 encodes a thaumatin-like protein that belongs to the PR-5 family of PR proteins, some of which possess antimicrobial properties. AtTLP1 knockout mutant plants showed normal levels of WCS417r-mediated ISR against the bacterial leaf pathogen Pseudomonas syringae pv. tomato DC3000, suggesting that expression of AtTLP1 in the roots is not required for systemic expression of ISR in the leaves. Together, these results indicate that induction of AtTLP1 is a local response of Arabidopsis roots to colonization by non-pathogenic fluorescent Pseudomonas spp. and is unlikely to play a role in systemic resistance.  相似文献   

11.
A new source of resistance to the pathotype 4 isolate of Turnip mosaic virus (TuMV) CDN 1 has been identified in Brassica napus (oilseed rape). Analysis of segregation of resistance to TuMV isolate CDN 1 in a backcross generation following a cross between a resistant and a susceptible B. napus line showed that the resistance was dominant and monogenic. Molecular markers linked to this dominant resistance were identified using amplified fragment length polymorphism (AFLP) and microsatellite bulk segregant analysis. Bulks consisted of individuals from a BC1 population with the resistant or the susceptible phenotype following challenge with CDN 1. One AFLP and six microsatellite markers were associated with the resistance locus, named TuRB03, and these mapped to the same region on chromosome N6 as a previously mapped TuMV resistance gene TuRB01. Further testing of TuRB03 with other TuMV isolates showed that it was not effective against all pathotype 4 isolates. It was effective against some, but not all pathotype 3 isolates tested. It provided further resolution of TuMV pathotypes by sub-dividing pathotypes 3 and 4. TuRB03 also provides a new source of resistance for combining with other resistances in our attempts to generate durable resistance to this virus.  相似文献   

12.
Chen R  Li H  Zhang L  Zhang J  Xiao J  Ye Z 《Plant cell reports》2007,26(7):895-905
Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different pepper (Capsium annuum L.) lines; however, none of them has yet been cloned. In this study, a candidate root-knot nematode resistance gene (designated as CaMi) was isolated from the resistant pepper line PR 205 by degenerate PCR amplification combined with the RACE technique. Expression profiling analysis revealed that this gene was highly expressed in roots, leaves, and flowers and expressed at a lower level in stems and was not detectable in fruits. To verify the function of CaMi, a sense vector containing the genomic DNA spanning the full coding region of CaMi was constructed and transferred into root-knot nematode susceptible tomato plants. Sixteen transgenic plants carrying one to five copies of T-DNA inserts were generated from two nematode susceptible tomato cultivars. RT-PCR analysis revealed that the expression levels of CaMi gene varied in different transgenic plants. Nematode assays showed that the resistance to root-knot nematodes was significantly improved in some transgenic lines compared to untransformed susceptible plants, and that the resistance was inheritable. Ultrastructure analysis showed that nematodes led to the formation of galls or root knots in the susceptible lines while in the resistant transgenic plants, the CaMi gene triggered a hypersensitive response (HR) as well as many necrotic cells around nematodes. Rugang Chen and Hanxia Li are contributed equally to this work.  相似文献   

13.
Dong HP  Yu H  Bao Z  Guo X  Peng J  Yao Z  Chen G  Qu S  Dong H 《Planta》2005,221(3):313-327
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.Hong-Ping Dong and Haiqin Yu contributed equally to this study and are regarded as joint first authors.  相似文献   

14.
To investigate the biocontrol effectiveness of the antibiotic producing bacterium, Pseudomonas aureofaciens 63–28 against the phytopathogen Rhizoctonia solani AG-4 on Petri plates and in soybean roots, growth response and induction of PR-proteins were estimated after inoculation with P. aureofaciens 63–28 (P), with R. solani AG-4 (R), or with P. aureofaciens 63–28 + R. solani AG-4 (P + R). P. aureofaciens 63–28 showed strong antifungal activity against R. solani AG-4 pathogens in Petri plates. Treatment with P. aureofaciens 63–28 alone increased the emergence rate, shoot fresh weight, shoot dry weight and root fresh weight at 7 days after inoculation, when compared to R. solani AG-4; P + R treatment showed similar effects. Peroxidase (POD) and β-1,3-glucanase activity of P. aureofaciens 63–28 treated roots increased by 41.1 and 49.9%, respectively, compared to control roots. POD was 26% greater in P + R treated roots than R. solani treated roots. Two POD isozymes (59 and 27 kDa) were strongly induced in P + R treated roots. The apparent molecular weight of chitinase from treated roots, as determined through SDS-PAGE separation and comparison with standards, was about 29 kDa. Five β-1,3-glucanase isozymes (80, 70, 50, 46 and 19 kDa) were observed in all treatments. These results suggest that inoculation of soybean plants with P. aureofaciens 63–28 elevates plant growth inhibition by R. solani AG-4 and activates PR-proteins, potentially through induction of systemic resistance mechanisms.  相似文献   

15.
This study aimed to compare the genetic control of cacao resistance to three species of Phytophthora: Phytophthora palmivora, Phytophthora megakarya and Phytophthora capsici. The study was conducted on 151 hybrid progenies created in Côte d'Ivoire and grown in a green-house in Montpellier. Phytophthora resistance was screened by leaf-test inoculation with two different strains per species. Selection of the best individuals for resistance to P. palmivora at a 10% selection rate, would lead to a genetic progress of 47% in the disease evaluation for this species and a genetic progress of 42% and 21% for the two other species. A genetic map with a total length of 682 cM was built with 213 markers, 190 AFLPs and 23 microsatellites. QTLs were identified using composite interval mapping. QTLs were found located in six genomic regions. One of these was detected with five strains belonging to the three Phytophthora species. Two other regions were detected with two or three strains of two different species. Three additional QTLs were detected for only one species of Phytophthora. Each QTL explained between 8 to 12% of the phenotypic variation. For each strain, between 11.5% to 27.5% of the total phenotypic variation could be explained by the QTLs identified. The identification of multiple QTLs involved in resistance to Phytophthora offers the possibility to improve durability of resistance in cocoa by a possible cumulation of many different resistance genes located in different chromosome regions using marker-aided selection.Communicated by H.F. Linskens  相似文献   

16.
The present study aimed to obtain analgesic-antitumor peptide (AGAP) gene expression in plants. The analgesic-antitumor peptide (AGAP) gene was from the venom of Buthus martensii Karsch. Previous studies showed that AGAP has both analgesic and antitumor activities, suggesting that AGAP would be useful in clinical situations as an antitumor drug. Given that using a plant as an expression vector has more advantages than prokaryotic expression, we tried to obtain transgenic plants containing AGAP. In the present study, the AGAP gene was cloned into the plasmid pBI121 to obtain the plant expression vector pBI-AGAP. By tri-parental mating and freeze–thaw transformation, pBI-AGAP was transformed into Agrobacterium tumefaciens LBA4404. Tobacco (Nicotiana tabacum) and tomato (Lycopersicom esculentum) were transformed by the method of Agrobacterium-mediated leaf disc transformation. The transformants were then screened to grow and root on media containing kanamycin. Finally, transformations were confirmed by analysis of PCR, RT-PCR and western blotting. The results showed that the AGAP gene was integrated into the genomic DNA of tobacco and tomato and was successfully expressed. Therefore, the present study suggests a potential industrial application of AGAP expressed in plants.  相似文献   

17.
ABOUT half the species of Phytophthora, including many important plant pathogens such as P. palmivora, P. cinnamomi and P. infestans, are heterothallic. Consistent induction of sexual reproduction in agar cultures of heterothallic species requires the pairing of isolates of the two compatibility groups, A1 and A2 (refs. 1–3). Although sex organs are occasionally formed in cultures of single isolates, such isolates though intrinsically bisexual are normally self-sterile2–3. In consequence it has been assumed that in nature the presence of both compatibility types is required for the formation of oospores.  相似文献   

18.
Summary We describe an in vitro propagation protocol for Zingiber petiolatum (Holttum), I. Theilade, a rare species from the southern part of Thailand. Fruits were surface-sterilized and seeds germinated on Murashige and Skoog medium (MS) medium supplemented with 3% sucrose. Three-month-old seedlings were used as initial plant material for in vitro propagation. Terminal buds of the plants were inoculated on MS medium containing 6-benzylaminopurine (BA; 2.2–35.5 μM) alone or in combination with 1-naphthaleneacetic acid (0.5 μM). Eight weeks after inoculation, the cultures were transferred to MS medium without plant growth regulators for 4wk. The cultures transferred from MS medium with 17.8 μM BA revealed the highest shoot induction rate of 6.1±0.7 shoots per explant. Rooting was spontaneously achieved in MS medium without plant growth regulators. Rooted plants were successfully transplanted to soil.  相似文献   

19.
Plant defensins are small, highly stable, cysteine-rich antimicrobial peptides produced by the plants for inhibiting a broad-spectrum of microbial pathogens. Some of the well-characterized plant defensins exhibit potent antifungal activity on certain pathogenic fungal species only. We characterized a defensin, TvD1 from a weedy leguminous herb, Tephrosia villosa. The open reading frame of the cDNA was 228 bp, which codes for a peptide with 75 amino acids. Expression analyses indicated that this defensin is expressed constitutively in T. villosa with leaf, stem, root, and seed showing almost similar levels of high expression. The recombinant peptide (rTvD1), expressed in the Escherichia coli expression system, exhibited potent in vitro antifungal activity against several filamentous soil-borne fungal pathogens. The purified peptide also showed significant inhibition of root elongation in Arabidopsis seedlings, subsequently affecting the extension of growing root hairs indicating that it has the potential to disturb the plant growth and development.  相似文献   

20.
The aim of our study was to identify the highest expressing rubisco small subunit (RbcS) promoters (pRbcS) from the cotyledons of germinating seedlings of Brassica rapa var. oleifera to drive high-level and preferably stage-specific transgenic protein expression in Brassicaceae plants. We cloned four new pRbcS promoters using several approaches, including the construction of a cDNA library and use of genome walking technique. Real-time PCR analysis of RbcS mRNA expression clearly showed that two of these promoters exhibited the highest activity on the germination stage of plant development. We used gusA expression as a reporter of promoter activity in Brassica napus and Nicotiana tabacum plants that were transformed with the constructs using an Agrobacterium-mediated transformation strategy. The mRNA level of RbcS and of gusA was quantified in transformed plants. The data obtained demonstrate that the promoter most active in seedlings under native conditions was also most active in transgenic constructs at the same stage of plant development. The fine structure of the promoters is discussed herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号