首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathogen and parasite community that inhabits every free-living organism can control host vital rates including lifespan and reproductive output. To date, however, there have been few experiments examining pathogen community assembly replicated at large-enough spatial scales to inform our understanding of pathogen dynamics in natural systems. Pathogen community assembly may be driven by neutral stochastic colonization and extinction events or by niche differentiation that constrains pathogen distributions to particular environmental conditions, hosts, or vectors.Here, we present results from a regionally-replicated experiment investigating the community of barley and cereal yellow dwarf viruses (B/CYDV''s) in over 5000 experimentally planted individuals of six grass species along a 700 km latitudinal gradient along the Pacific coast of North America (USA) in response to experimentally manipulated nitrogen and phosphorus supplies. The composition of the virus community varied predictably among hosts and across nutrient-addition treatments, indicating niche differentiation among virus species. There were some concordant responses among the viral species. For example, the prevalence of most viral species increased consistently with perennial grass cover, leading to a 60% increase in the richness of the viral community within individual hosts (i.e., coinfection) in perennial-dominated plots. Furthermore, infection rates of the six host species in the field were highly correlated with vector preferences assessed in laboratory trials. Our results reveal the importance of niche differentiation in structuring virus assemblages. Virus species distributions reflected a combination of local host community composition, host species-specific vector preferences, and virus responses to host nutrition. In addition, our results suggest that heterogeneity among host species in their capacity to attract vectors or support pathogens between growing seasons can lead to positive covariation among virus species.  相似文献   

2.
Multiple anthropogenic pressures including the widespread introductions of non‐native species threaten biodiversity and ecosystem functioning notably by modifying the trophic structure of communities. Here, we provided a global evaluation of the impacts of non‐native species on the isotopic structure (δ13C and δ15N) of freshwater fish communities. We gathered the stable isotope values (n = 4030) of fish species in 496 fish communities in lentic (lakes, backwaters, reservoirs) and lotic (running waters such as streams, rivers) ecosystems throughout the world and quantified the isotopic structure of communities. Overall, we found that communities containing non‐native species had a different isotopic structure than communities without non‐native species. However, these differences varied between ecosystem types and the trophic positions of non‐native species. In lotic ecosystems, communities containing non‐native species had a larger total isotopic niche than communities without non‐native species. This was primarily driven by the addition of non‐native predators at the top of the food chain that increased δ15N range without modifying the isotopic niche size of native species. In lentic ecosystems, non‐native primary consumers increased δ15N range and this was likely driven by an increase of resource availability for species at higher trophic levels, increasing food chain length. The introduction of non‐native secondary consumers at the centre of the isotopic niche of recipient communities decreased the core isotopic niche size, the δ13C range of recipient communities and the total isotopic niche of coexisting native species. These results suggested a modified contribution of the basal resources consumed (e.g. multi‐chain omnivory) and an increase level of competition with native species. Our results notably imply that, by affecting the isotopic structure of freshwater fish communities at a global scale, non‐native species represent an important source of perturbations that should be accounted for when investigating macro‐ecological patterns of community structure and biotic interactions.  相似文献   

3.
The potential for disease transmission at the interface of wildlife, domestic animals and humans has become a major concern for public health and conservation biology. Research in this subject is commonly conducted at local scales while the regional context is neglected. We argue that prevalence of infection at local and regional levels is influenced by three mechanisms occurring at the landscape level in a metacommunity context. First, (1) dispersal, colonization, and extinction of pathogens, reservoir or vector hosts, and nonreservoir hosts, may be due to stochastic and niche‐based processes, thus determining distribution of all species, and then their potential interactions, across local communities (metacommunity structure). Second, (2) anthropogenic processes may drive environmental filtering of hosts, nonhosts, and pathogens. Finally, (3) phylogenetic diversity relative to reservoir or vector host(s), within and between local communities may facilitate pathogen persistence and circulation. Using a metacommunity approach, public heath scientists may better evaluate the factors that predispose certain times and places for the origin and emergence of infectious diseases. The multidisciplinary approach we describe fits within a comprehensive One Health and Ecohealth framework addressing zoonotic infectious disease outbreaks and their relationship to their hosts, other animals, humans, and the environment.  相似文献   

4.
The spread of vector‐borne pathogens depends on a complex set of interactions among pathogen, vector, and host. In single‐host systems, pathogens can induce changes in vector preferences for infected vs. healthy hosts. Yet it is unclear if pathogens also induce changes in vector preference among host species, and how changes in vector behaviour alter the ecological dynamics of disease spread. Here, we couple multi‐host preference experiments with a novel model of vector preference general to both single and multi‐host communities. We show that viruliferous aphids exhibit strong preferences for healthy and long‐lived hosts. Coupling experimental results with modelling to account for preference leads to a strong decrease in overall pathogen spread through multi‐host communities due to non‐random sorting of viruliferous vectors between preferred and non‐preferred host species. Our results demonstrate the importance of the interplay between vector behaviour and host diversity as a key mechanism in the spread of vectored‐diseases.  相似文献   

5.
Aim In aquatic ecosystems, standing (lentic) and running (lotic) waters differ fundamentally in their stability and persistence, shaping the comparative population genetic structure, geographical range size and speciation rates of lentic versus lotic lineages. While the drivers of this pattern remain incompletely understood, the suite of traits making up the ability of a species to establish new populations is instrumental in determining such differences. Here we explore the degree to which the association between habitat type and geographical range size results from differences in dispersal ability or fundamental niche breadth in the members of the Enochrus bicolor complex, an aquatic beetle clade with species across the lentic–lotic divide. Location Western Mediterranean, with a special focus on North Africa, the Iberian Peninsula and Sicily. Methods DNA sequences for four loci were obtained from species of the E. bicolor complex and analysed using phylogenetic inference. Dispersal and establishment abilities were assessed in lentic–lotic species pairs of the complex, using flight wing morphometrics and thermal tolerance ranges as surrogates, respectively. Results There were clear differences in range size between the lotic and lentic taxa of the complex, which appears to have had a lotic origin with two transitions to standing waters. Only small differences were observed in temperature tolerance and acclimation ability between the two lotic–lentic sister species studied. By contrast, wing morphometrics revealed clear, consistent differences between lotic and lentic Enochrus species pairs, the latter having a higher dispersal capacity. Main conclusions We hypothesize that there have been two habitat shifts from lotic to lentic waters, which have allowed marked expansions in geographical range size in western Mediterranean species of the E. bicolor complex. Differences in dispersal rather than in establishment ability appear to underlie differences in geographical range extent, as transitions to lentic waters were associated with changes in wing morphology, but not in thermal tolerance range. In this lineage of water beetles, selection for dispersal in geologically short‐lived lentic systems has driven the evolution of larger range sizes in lentic taxa compared with those of their lotic relatives.  相似文献   

6.
The impact of infectious diseases in natural ecosystems is strongly influenced by the degree of pathogen specialization and by the local assemblies of potential host species. This study investigated anther‐smut disease, caused by fungi in the genus Microbotryum, among natural populations of plants in the Caryophyllaceae. A broad geographic survey focused on sites of the disease on multiple host species in sympatry. Analysis of molecular identities for the pathogens revealed that sympatric disease was most often due to co‐occurrence of distinct, host‐specific anther‐smut fungi, rather than localized cross‐species disease transmission. Flowers from sympatric populations showed that the Microbotryum spores were frequently moved between host species. Experimental inoculations to simulate cross‐species exposure to the pathogens in these plant communities showed that the anther‐smut pathogen was less able to cause disease on its regular host when following exposure of the plants to incompatible pathogens from another host species. These results indicate that multi‐host/multi‐pathogen communities are common in this system and they involve a previously hidden mechanism of interference between Microbotryum fungi, which likely affects both pathogen and host distributions.  相似文献   

7.
Many pathogens infect more than one host species, and clarifying how these different hosts contribute to pathogen dynamics can facilitate the management of pathogens and can lend insight into the functioning of pathogens in ecosystems. In this study, we investigated a suite of native and non-native amphibian hosts of the pathogen Batrachochytrium dendrobatidis (Bd) across multiple scales to identify potential mechanisms that may drive infection patterns in the Colorado study system. Specifically, we aimed to determine if: 1) amphibian populations vary in Bd infection across the landscape, 2) amphibian community composition predicts infection (e.g., does the presence or abundance of any particular species influence infection in others?), 3) amphibian species vary in their ability to produce infectious zoospores in a laboratory infection, 4) heterogeneity in host ability observed in the laboratory scales to predict patterns of Bd prevalence in the landscape. We found that non-native North American bullfrogs (Lithobates catesbeianus) are widespread and have the highest prevalence of Bd infection relative to the other native species in the landscape. Additionally, infection in some native species appears to be related to the density of sympatric L. catesbeianus populations. At the smaller host scale, we found that L. catesbeianus produces more of the infective zoospore stage relative to some native species, but that this zoospore output does not scale to predict infection in sympatric wild populations of native species. Rather, landscape level infection relates most strongly to density of hosts at a wetland as well as abiotic factors. While non-native L. catesbeianus have high levels of Bd infection in the Colorado Front Range system, we also identified Bd infection in a number of native amphibian populations allopatric with L. catesbeianus, suggesting that multiple host species are important contributors to the dynamics of the Bd pathogen in this landscape.  相似文献   

8.
Environmental conditions are rarely constant, but instead vary spatially and temporally. This variation influences ecological interactions and epidemiological dynamics, yet most experimental studies examine interactions under constant conditions. We examined the effects of variability in temperature on the host–pathogen relationship between an aquatic zooplankton host (Daphnia laevis) and an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). We manipulated temperature variability by exposing all populations to mean temperatures of 20°C for the length of the experiments, but introducing periods of 1, 2, and 4 hr each day where the populations were exposed to 28°C followed by periods of the same length (1, 2, and 4 hr, respectively) where the populations were exposed to 12°C. Three experiments were performed to assess the role of thermal variability on Daphnia–pathogen interactions, specifically with respect to: (1) host infection prevalence and intensity; (2) free‐living pathogen survival; and (3) host foraging ecology. We found that temperature variability affected host filtering rate, which is closely related to pathogen transmission in this system. Further, infection prevalence was reduced as a function of temperature variability, while infection intensity was not influenced, suggesting that pathogen transmission was influenced by temperature variability, but the growth of pathogen within infected hosts was not. Host survival was reduced by temperature variability, but environmental pathogen survival was unaffected, suggesting that zooplankton hosts were more sensitive than the fungal pathogen to variable temperatures. Together, these experiments suggest that temperature variability may influence host demography and host–pathogen interactions, providing a link between host foraging ecology and pathogen transmission.  相似文献   

9.
Mycobacterium ulcerans (MU), the causative agent of Buruli ulcer, is present in a wide spectrum of environments, including terrestrial and aquatic ecosystems in tropical regions. The most promising studies on the epidemiological risk of this disease suggest that some ecological settings may favor infection of animals with MU including human. A species’ needs and impacts on resources and the environment, i.e., its ecological niche, may influence its susceptibility to be infected by this microbial form. For example, some Naucoridae may dive in fresh waters to prey upon infected animals and thus may get infected with MU. However, these studies have rarely considered that inference on the ecological settings favoring infection and transmission may be confounded because host carrier sister species have similar ecological niches, and potentially the same host–microbe interactions. Hence, a relationship between the ecological niche of Naucoridae and its infection with MU may be due to a symbiotic relationship between the host and the pathogen, rather than its ecological niche. To account for this confounding effect, we investigated the relationships between surrogates of the ecological niche of water bug species and their susceptibility to MU, by performing phylogenetic comparative analyses on a large dataset of 11 families of water bugs collected in 10 different sites across Cameroon, central Africa. Our results indicate that MU circulates and infects a couple of host taxa, i.e., Belostomatidae, Naucoridae, living both in the aquatic vegetation and as predators inside the trophic network and sister species of water bugs have indeed similar host–microbe interactions with MU.  相似文献   

10.
Most emerging pathogens can infect multiple species, underlining the importance of understanding the ecological and evolutionary factors that allow some hosts to harbour greater infection prevalence and share pathogens with other species. However, our understanding of pathogen jumps is based primarily around viruses, despite bacteria accounting for the greatest proportion of zoonoses. Because bacterial pathogens in bats (order Chiroptera) can have conservation and human health consequences, studies that examine the ecological and evolutionary drivers of bacterial prevalence and barriers to pathogen sharing are crucially needed. Here were studied haemotropic Mycoplasma spp. (i.e., haemoplasmas) across a species‐rich bat community in Belize over two years. Across 469 bats spanning 33 species, half of individuals and two‐thirds of species were haemoplasma positive. Infection prevalence was higher for males and for species with larger body mass and colony sizes. Haemoplasmas displayed high genetic diversity (21 novel genotypes) and strong host specificity. Evolutionary patterns supported codivergence of bats and bacterial genotypes alongside phylogenetically constrained host shifts. Bat species centrality to the network of shared haemoplasma genotypes was phylogenetically clustered and unrelated to prevalence, further suggesting rare—but detectable—bacterial sharing between species. Our study highlights the importance of using fine phylogenetic scales when assessing host specificity and suggests phylogenetic similarity may play a key role in host shifts not only for viruses but also for bacteria. Such work more broadly contributes to increasing efforts to understand cross‐species transmission and the epidemiological consequences of bacterial pathogens.  相似文献   

11.
More freshwater ecosystems are drying in response to global change thereby posing serious threat to freshwater biota and functions. The production of desiccation‐resistant forms is an important adaptation that helps maintain biodiversity in temporary freshwaters by buffering communities from drying, but its potential to mitigate the negative effects of drying in freshwater ecosystems could vary greatly across regions and ecosystem types. We explored this context dependency by quantifying the potential contribution of desiccation‐resistance forms to invertebrate community recovery across levels of regional drying prevalence (defined as the occurrence of drying events in freshwaters in a given region) and ecosystem types (lentic, lotic) in temporary neotropical freshwaters. We first predicted that regional drying prevalence influences the selection of species with desiccation‐resistant forms from the regional species pools and thus increases the ability of communities to recover from drying. Second, we predicted lentic freshwaters harbor higher proportions of species with desiccation‐resistant forms compared to lotic, in response to contrasted hydrologic connectivity. To test these predictions, we used natural experiments to quantify the contribution of desiccation‐resistant forms to benthic invertebrate community recovery in nine intermittent streams and six geographically isolated temporary wetlands from three Bolivian regions differing in drying prevalence. The contribution of desiccation‐resistant forms to community recovery was highest where regional drying prevalence was high, suggesting the species pool was adapted to regional disturbance regimes. The contribution of desiccation‐resistant forms to community recovery was lower in streams than in wetlands, emphasizing the importance of hydrologic connectivity and associated recolonization processes from in‐stream refuges to recovery in lotic systems. In all regions, the majority of functional traits were present in desiccation‐resistant taxa indicating this adaptation may help maintain ecosystem functions by buffering communities from the loss of functional traits. Accounting for regional context and hydrologic connectivity in community recovery processes following drying can help refine predictions of freshwater biodiversity response to global change.  相似文献   

12.
Emerging infectious disease outbreaks are increasingly suspected to be a consequence of human pressures exerted on natural ecosystems. Previously, host taxonomic communities have been used as indicators of infectious disease emergence, and the loss of their diversity has been implicated as a driver of increased presence. The mechanistic details in how such pathogen–host systems function, however, may not always be explained by taxonomic variation or loss. Here we used machine learning and methods based on Gower’s dissimilarity to quantify metrics of invertebrate functional diversity, in addition to functional groups and their taxonomic diversity at sites endemic and non-endemic for the model generalist pathogen Mycobacterium ulcerans, the causative agent of Buruli ulcer. Changes in these metrics allowed the rapid categorisation of the ecological niche of the mycobacterium’s hosts and the ability to relate specific host traits to its presence in aquatic ecosystems. We found that taxonomic diversity of hosts and overall functional diversity loss and evenness had no bearing on the mycobacterium’s presence, or whether the site was in an endemic area. These findings, however, provide strong evidence that generalist environmentally persistent bacteria such as M. ulcerans can be associated with specific functional traits rather than taxonomic groups of organisms, increasing our understanding of emerging disease ecology and origin.  相似文献   

13.
Pathogens that infect multiple hosts are commonly transmitted by vectors, and their transmission rate is often thought to depend on the proportion of hosts or vectors infected (i.e., frequency dependence). A model of a two-host, one-pathogen system with frequency-dependent transmission is used to investigate how sharing a pathogen with an alternative host influences pathogen-mediated extinction. The results show that if there is frequency-dependent transmission, a host can be rescued from pathogen-mediated extinction by the presence of a second host with which it shares a pathogen. The study provides an important conceptual counterexample to the idea that shared pathogens necessarily result in apparent competition by showing that shared pathogens can mediate apparent mutualism. We distinguish two types of dilution effect (pathogen reduction with increasing host diversity), each resulting from different underlying pathogen transmission processes and host density effects. These results have important consequences for understanding the role of pathogens in species interactions and in maintaining host species diversity.  相似文献   

14.
Predicting species'' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host–pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host–pathogen coevolution.  相似文献   

15.
Aim In Europe, the relationships between species richness and latitude differ for lentic (standing water) and lotic (running water) species. Freshwater animals are highly dependent on suitable habitat, and thus the distribution of available habitat should strongly influence large‐scale patterns of species richness. We tested whether habitat availability can account for the differences in species richness patterns between European lentic and lotic freshwater animals. Location Europe. Methods We compiled occurrence data of 1959 lentic and 2445 lotic species as well as data on the amount of lentic and lotic habitats across 25 pre‐defined biogeographical regions of European freshwaters. We used the range of elevation of each region as a proxy for habitat diversity. We investigated the relationships between species richness, habitat availability and habitat diversity with univariate and multiple regression analyses. Results Species richness increased with habitat availability for lentic species but not for lotic species. Species richness increased with elevational range for lotic species but decreased for lentic species. For both groups, neither habitat availability nor diversity could account for previously reported latitudinal patterns in species richness. For lotic species, richness declined with latitude, whereas there was no relationship between habitat availability and latitude. For lentic species, richness showed a hump‐shaped relationship with latitude, whereas available habitat increased with latitude. Main conclusions Habitat availability and diversity are poor predictors of species richness of the European freshwater fauna across large scales. Our results indicate that the distributions of European freshwater animals are probably not in equilibrium and may still be influenced by history, namely the recurrent European glaciations and possible differences in post‐glacial recolonization. The distributions of lentic species appear to be closer to equilibrium than those of lotic species. This lends further support to the hypothesis that lentic species have a higher propensity for dispersal than lotic species.  相似文献   

16.
Conventional disease theory suggests that extinction with density‐dependent transmission is unlikely as the threshold host density (KT) is greater than zero. Extinction may result if transmission is frequency dependent or the pathogen has an environmental reservoir. Given the importance of understanding how pathogens affect species richness and diversity there are few empirical tests of these conclusions. We used an Ambystoma tigrinumAmbystoma tigrinum virus (ATV) model system in the laboratory to examine disease transmission dynamics. Susceptible A. tigrinum larvae were exposed to three different densities and proportions of infected larvae for 24 h. We then housed susceptible hosts individually for 28 days and monitored them for infection. The density of infected hosts to which susceptible hosts were exposed was the best predictor of infection (p=0.037). There was no effect of host clutch on the probability of becoming infected (p=0.67). Larvae in the highest density treatments died sooner than larvae in lower density treatments (p<0.001). Asymptomatic but infected hosts shed sufficient virus into the water in a 24‐h period to infect susceptible hosts without any direct contact between individuals. ATV transmission was best described by a power function, leading to the prediction that extinction of A. tigrinum as a result of this pathogen is unlikely. Indeed, field observations show that larval salamander populations that experience ATV‐driven epidemics may decrease, but not to extinction, and then recover. Disease is proposed as a possible explanation for the global decline of amphibians. Ranaviruses infect many amphibian populations, but based on our results may not be a general cause of declines to extinction. In contrast, frequency dependent transmission, environmental reservoirs and alternative hosts may be the most likely explanation for the enigmatic decline, at times to extinction, of some amphibian populations as a result of emerging infectious diseases, like the chytrid fungus Batrachochytrium dendrobatidis.  相似文献   

17.
An ecological study was conducted in May and June of 1995 and 1996 in South Carolina to determine the factors associated with distributions of aquatic Lepidoptera (Crambidae: Nymphulinae). Larvae were found at 65 lotic and lentic sites in three ecoregions (Piedmont, Sandhills, Coastal Plain). Nine species of aquatic Lepidoptera were collected from 12 species of aquatic vascular macrophytes. One to six plant species were used as hosts, depending on the species of lepidopteran; however, the number of host plants used by a lepidopteran was significantly correlated with the lepidopteran's frequency of occurrence. Significant habitat associations were found for five species. Langessa nomophilalis (Dyar) was found under the widest range of temperature and width and occurred in both lotic and lentic habitats. Munroessa icciusalis (Walker) was found in lotic and lentic habitats and had the widest range of recorded depths. Parapoynx maculalis (Clemens) occurred at stream sites with lentic-like conditions. Parapoynx obscuralis (Grote) occupied the widest range of pH and was restricted to lotic habitats, and P. seminealis (Walker) was found in both lotic and lentic habitats. Additional species, collected at fewer than 8% of sites, included M. gyralis, P. allionealis, Synclita obliteralis, and S. tinealis. Overall, the distributions of aquatic Lepidoptera in South Carolina were nonrandom and predictable on the basis of habitat characteristics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Most species seem to be completely resistant to most pathogens and parasites. This resistance has been called “nonhost resistance” because it is exhibited by species that are considered not to be part of the normal host range of the pathogen. A conceptual model is presented suggesting that failure of infection on nonhosts may be an incidental by‐product of pathogen evolution leading to specialization on their source hosts. This model is contrasted with resistance that results from hosts evolving to resist challenge by their pathogens, either as a result of coevolution with a persistent pathogen or as the result of one‐sided evolution by the host against pathogens that are not self‐sustaining on those hosts. Distinguishing evolved from nonevolved resistance leads to contrasting predictions regarding the relationship between resistance and genetic distance. An analysis of cross‐inoculation experiments suggests that the resistance is often the product of pathogen specialization. Understanding the contrasting evolutionary origins of resistance is critical for studies on the genetics and evolution of host–pathogen interactions in human, agricultural, and natural populations. Research on human infectious disease using animal models may often study resistances that have quite contrasting evolutionary origins, and therefore very different underlying genetic mechanisms.  相似文献   

19.
Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.  相似文献   

20.
Host sterilization is a common feature of sexually transmitted diseases (STDs). Because host reproductive failure may free up resources for pathogen reproduction and transmission, theory predicts that selection on sterilizing pathogens will favour maximum virulence (i.e. complete sterilization). We examined patterns of infection in sexually transmitted anther-smut fungi (Microbotryum) on four of their host species in the Caryophyllaceae. Using controlled fungal matings and experimental inoculations, we compared disease expression in inoculations ranging from host-specific pathogens to hybrids and cross-species treatments. Our data support the existence of host-specific sibling species within the genus Microbotryum based on a low infection rate from cross-inoculations and reduced fitness for hybrid pathogens. These patterns of host specificity and reproductive isolation, however, were not absolute. We did observe some successful cross-species and hybrid infections, but the expression of disease was frequently incomplete, including only partial host sterilization and the failed dehiscence of pathogen spores. The prevalence of these maladapted disease phenotypes may greatly inhibit the emergence of novel host pathogen combinations. Infections by hybrid pathogen genotypes were intermediate, in terms of both infection rate and the normality of disease symptoms, between host-specific and cross-inoculated pathogens. In addition, the frequency with which hybrid and cross-inoculated anther-smut pathogens were able to infect but not sterilize new hosts supports the prediction that sterilizing STDs are under selection to maximize virulence in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号