首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59854篇
  免费   5881篇
  国内免费   12篇
  2023年   230篇
  2021年   743篇
  2020年   610篇
  2019年   695篇
  2018年   1072篇
  2017年   1021篇
  2016年   1456篇
  2015年   2127篇
  2014年   2380篇
  2013年   3093篇
  2012年   4243篇
  2011年   4250篇
  2010年   2643篇
  2009年   2123篇
  2008年   3521篇
  2007年   3492篇
  2006年   3321篇
  2005年   2953篇
  2004年   2911篇
  2003年   2645篇
  2002年   2602篇
  2001年   1478篇
  2000年   1549篇
  1999年   1045篇
  1998年   596篇
  1997年   480篇
  1996年   501篇
  1995年   514篇
  1994年   452篇
  1993年   450篇
  1992年   589篇
  1991年   532篇
  1990年   509篇
  1989年   508篇
  1988年   509篇
  1987年   473篇
  1986年   417篇
  1985年   455篇
  1984年   463篇
  1983年   405篇
  1982年   423篇
  1981年   394篇
  1980年   319篇
  1979年   359篇
  1978年   291篇
  1977年   293篇
  1976年   274篇
  1975年   299篇
  1974年   258篇
  1973年   258篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Primary caregivers for victims of chronic illness and or trauma experience both positive and negative emotional consequences. These are broadly classified as compassion satisfaction (CS) and compassion fatigue (CF). Because one of the components of CF, burnout, varies with chronotype and sleep quality, we assessed the influence of chronobiological features on the broader constructs of CS and CF. Responses from primary ambulatory care oncology staff working dayshifts were assessed for potential relationships of chronotype and sleep quality with CS and CF using the professional quality of life scale. These were analyzed further in a multivariate model that included personality and job satisfaction as cofactors. We found that sleep quality was a key contributor to CS development and CF reduction. Morningness was positively linked to CS, but the univariate association was masked in the multivariate model. Job satisfaction (contingent rewards, nature of work and operating procedures) heavily influenced CS and CF development. Agreeableness and openness showed positive correlations with CS and negative with burnout, while emotional stability was linked to reduced CF. While job satisfaction and personality predictably played roles in the development of CS and CF, sleep quality and chronotype contributed significantly to benefits and negative consequences of providing care.  相似文献   
3.
Fungi play important roles in biogeochemical processes such as organic matter decomposition, bioweathering of minerals and rocks, and metal transformations and therefore influence elemental cycles for essential and potentially toxic elements, e.g., P, S, Pb, and As. Arsenic is a potentially toxic metalloid for most organisms and naturally occurs in trace quantities in soil, rocks, water, air, and living organisms. Among more than 300 arsenic minerals occurring in nature, mimetite [Pb5(AsO4)3Cl] is the most stable lead arsenate and holds considerable promise in metal stabilization for in situ and ex situ sequestration and remediation through precipitation, as do other insoluble lead apatites, such as pyromorphite [Pb5(PO4)3Cl] and vanadinite [Pb5(VO4)3Cl]. Despite the insolubility of mimetite, the organic acid-producing soil fungus Aspergillus niger was able to solubilize mimetite with simultaneous precipitation of lead oxalate as a new mycogenic biomineral. Since fungal biotransformation of both pyromorphite and vanadinite has been previously documented, a new biogeochemical model for the biogenic transformation of lead apatites (mimetite, pyromorphite, and vanadinite) by fungi is hypothesized in this study by application of geochemical modeling together with experimental data. The models closely agreed with experimental data and provided accurate simulation of As and Pb complexation and biomineral formation dependent on, e.g., pH, cation-anion composition, and concentration. A general pattern for fungal biotransformation of lead apatite minerals is proposed, proving new understanding of ecological implications of the biogeochemical cycling of component elements as well as industrial applications in metal stabilization, bioremediation, and biorecovery.  相似文献   
4.
5.
Orobates pabsti, a basal diadectid from the lower Permian, is a key fossil for the understanding of early amniote evolution. Quantitative analysis of anatomical information suffers from fragmentation of fossil bones, plastic deformation due to diagenetic processes and fragile preservation within surrounding rock matrix, preventing further biomechanical investigation. Here we describe the steps taken to digitally reconstruct MNG 10181, the holotype specimen of Orobates pabsti, and subsequently use the digital reconstruction to assess body mass, position of the centre of mass in individual segments as well as the whole animal, and study joint mobility in the shoulder and hip joints. The shape of most fossil bone fragments could be recovered from micro-focus computed tomography scans. This also revealed structures that were hitherto hidden within the rock matrix. However, parts of the axial skeleton had to be modelled using relevant isolated bones from the same locality as templates. Based on the digital fossil, mass of MNG 10181 was estimated using a model of body shape that was varied within a plausible range to account for uncertainties of the dimension. In the mean estimate model the specimen had an estimated mass of circa 4 kg. Varying of the mass distribution amongst body segments further revealed that Orobates carried most of its weight on the hind limbs. Mostly unrestricted joint morphology further suggested that MNG 10181 was able to effectively generate propulsion with the pelvic limbs. The digital reconstruction is made available for future biomechanical studies.  相似文献   
6.
We used a strategy based on long PCR (polymerase chain reaction) for detection and characterization of mitochondrial DNA (mtDNA) rearrangements in two patients with clinical signs suggesting Pearson syndrome and Kearns-Sayre syndrome (KSS), respectively, and one patient with myopathic symptoms of unidentified origin. Mitochondrial DNA rearrangements were detected by amplification of the complete mitochondrial genome (16.6 kb) using long PCR with primers located in essential regions of the mitochondrial genome and quantified by three-primer PCR. Long PCR with deletion-specific primers was used for identification and quantitative estimation of the different forms of rearranged molecules, such as deletions and duplications. We detected significant amounts of a common 7.4-kb deletion flanked by a 12-bp direct repeat in all tissues tested from the patient with Pearson syndrome. In skeletal muscle from the patient with clinical signs of KSS we found significant amounts of a novel 3.7-kb rearrangement flanked by a 4-bp inverted repeat that was present in the form of deletions as well as duplications. In the patient suffering from myopathic symptoms of unidentified origin we did not detect rearranged mtDNA in blood but found low levels of two rearranged mtDNA populations in skeletal muscle, a previously described 7-kb deletion flanked by a 7-bp direct repeat and a novel 6.6-kb deletion with no repeat. These two populations, however, were unlikely to be the cause of the myopathic symptoms as they were present at low levels (10–40 ppm). Using a strategy based on screening with long PCR we were able to detect and characterize high as well as low levels of mtDNA rearrangements in three patients. Received: 10 March 1997 / Accepted: 20 May 1997  相似文献   
7.
The effects ofphosphorylation status on Ca2+release and Ca2+ removal werestudied in fast-twitch flexor digitorum brevis and slow-twitch soleusskeletal muscle fibers enzymatically isolated from wild-type andphospholamban knockout (PLBko) mice. In all fibers the adenosine3',5'-cyclic monophosphate-dependent protein kinase (PKA)inhibitor H-89 decreased the peak amplitude of the intracellularCa2+ concentration([Ca2+]) transient fora single action potential, and the PKA activator dibutyryl adenosine3',5'-cyclic monophosphate (DBcAMP) reversed this effect,indicating modulation of Ca2+release by phosphorylation status in all fibers. H-89 decreased thedecay rate constant of the[Ca2+] transient andDBcAMP reversed this effect only in phospholamban-expressing fibers(wild-type soleus), indicating modulation ofCa2+ removal only in the presenceof phospholamban. A high basal level of PKA phosphorylation in soleusfibers maintained under our control conditions was indicated bythe lack of effect of direct application of DBcAMP onCa2+ release orCa2+ removal in wild-type or PLBkosoleus fibers and was confirmed by analysis of phospholamban fromwild-type soleus fibers.

  相似文献   
8.
9.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号