首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
We have recently reported that exposure of pregnant rats to 60 Hz at field strengths up to 0.5 mT during the entire period of pregnancy did not induce any biologically significant effects on both pregnant dams and embryo-fetal development. The present study was carried out to investigate the potential effects of gestational and lactational MF exposure on pregnancy, delivery, and lactation of dams and growth, behavior, and mating performance of their offspring in rats. Timed-pregnant female Sprague-Dawley (SD) rats (24/group) received continuous exposure to 60 Hz magnetic field (MF) at field strengths of 0 (sham control), 5 microT, 83.3 microT, or 0.5 mT. Dams received MF or sham exposures for 21 h/day from gestational day 6 through lactational day 21. Experimentally generated MF was monitored continuously throughout the study. No exposure-related changes in clinical signs, body weight, food consumption, pregnancy length, and necropsy findings were observed in dams. Parameters of growth, behavior, and reproductive performance of offspring showed no changes related to MF exposure. There were no adverse effects on embryo-fetal development of F2 offspring from dams exposed to MF. In conclusion, exposure of pregnant SD rats to 60 Hz at field strengths up to 0.5 mT from gestational day 6 to lactational day 21 did not produce biologically significant effects in dams, F1 offspring, or F2 fetuses.  相似文献   

2.
Pregnant Sprague-Dawley rats were used to determine the effects of the addition of 200 ppm of Cd (as CdCl2) to the diet factorially with two levels of dietary Ca (0.07% and 0.96%) on reproductive performance, concentrations of Cd, Cu, Fe, Zn, Ca and Mg in dam liver and kidney and in newborn progeny. High Cd significantly increased liver and kidney Cd, Zn and Ca and decreased liver Fe. High dietary Ca partially protected against accumulation of Cd in liver and kidney but had no effect on concentration of other elements. Number of live or stillborn pups per litter was not significantly affected by diet but high Cd significantly reduced pup birth weight. No grossly abnormal pups were noted. Concentration of Cd in bodies of newborn pups was increased approximately 8.6-fold by high Cd in the diet of dams fed the 0.07% Ca-diet and 3.8-fold by high-Cd in the diet of dams fed the 0.96% Ca diet. Pup, Zn, Cu and Fe contents were significantly decreased and Ca was significantly increased by high-Cd in the maternal diet whereas pup Mg content was unchanged. Maternal Ca intake had no effect on concentration of Zn, Cu, Fe or Ca in newborn pups. The biological importance of the alteration in maternal and fetal tissue concentration of Zn, Cu and Fe by high-Cd maternal diets is unknown.  相似文献   

3.
4.
In order to verify the effects of exposure to Cd and Zn on testicular DAAM1 gene and protein expression and also to ascertain their involvement in the protective role of Zn in prevent the testicular toxicity Cd‐induced in male offspring rats at adult age after gestational and lactational exposure, male offspring rats, from mothers receiving either tap water, Cd, Zn, or Cd + Zn during gestation and lactation periods, were scarified on postnatal days (PND) 70. The reproductive organ (testis, epididymis, and vesicle seminal) were collected, weighed, and analyzed. The results showed that exposure to Cd in utero and through lactation decreased the relative reproductive organ weight, altered the testicular histology at the interstitial and tubular levels, and causing a significant reduction in the daily sperm production (DSP) per testis and per gram of testis, and other then altering the epididymal sperm quality. Furthermore, both mRNA and protein expression of rat testicular DAAM1 were also inhibited in Cd‐treated group. Zn supply has completely corrected the most of these toxic effects. Our results imply that Zn could prevent Cd‐induced testicular toxicity and sperm quality alteration in adult male rat after gestational and lactational exposure, probably via the restoration of the testicular DAAM1 expression inhibited by Cd.  相似文献   

5.
AimsThe effect of ethanol consumption, either during pregnancy and/or lactation, on the altered metabolism of zinc (Zn) is not well-defined. Therefore, this study was performed to analyse the effect of chronic ethanol exposure on Zn redistribution in dams and offspring during either gestation and/or lactation.MethodsWe have used three groups of Wistar rat dams: control (CD), ethanol (ED), and pair-fed dams (PD). Some of the newborns were cross-fostered to dams at birth and we formed five experimental groups of offspring: control (CO); those exposed to ethanol during gestation only (GO); those exposed to ethanol during lactation only (LO); those exposed to ethanol during both periods (EO); and pair-fed groups (PO). Zn levels were measured by flame atomic absorption spectrophotometry.ResultsZinc distribution is altered in ED with respect to CD, presenting significantly higher Zn values in the brain and spleen, and lower levels in the liver. However, total organs Zn levels are similar between dams. Ethanol-treated offspring (GO, LO, EO) consumed significantly less Zn than the CO. However, LO and EO showed significantly higher Zn serum levels. Zn distribution was altered in ethanol-treated offspring. GO and LO showed lower Zn levels in liver than CO; GO presents the lowest Zn liver levels. These levels were significantly lower than EO and PO. Ethanol-treated pups present significantly higher spleen and testes values than CO and PO. Total organ Zn levels were significantly lower in GO.ConclusionsMaternal adaptation resulted in organ Zn retention in order to meet the demands of pup’s growth in the face of a lower diet intake. However, there was a redistribution of Zn in organ contents. Therefore, the ethanol route administration (via placenta and/or milk) affects Zn redistribution in pups in a different way.  相似文献   

6.
Divalent metal transporter-1 (DMT1) mediates dietary nonheme iron absorption. Belgrade (b) rats have defective iron metabolism due to a mutation in the DMT1 gene. To examine the role of DMT1 in neonatal iron assimilation, b/b and b/+ pups were cross-fostered to F344 Fischer dams injected with (59)FeCl(3) twice weekly during lactation. Tissue distribution of the radioisotope in the pups was determined at weaning (day 21). The b/b pups had blood (59)Fe levels significantly lower than b/+ controls but significantly higher (59)Fe tissue levels in heart, bone marrow, skeletal muscle, kidney, liver, spleen, stomach, and intestines. To study the pharmacokinetics of nonheme iron absorption at the time of weaning, (59)FeCl(3) was administered to 21-day-old b/b and b/+ rats by intragastric gavage. Blood (59)Fe levels measured 5 min to 4 h postgavage were significantly lower in b/b rats, consistent with impaired DMT1 function in intestinal iron absorption. Tissue (59)Fe levels were also lower in b/b rats postgavage. Combined, these data suggest that DMT1 function is not essential for iron assimilation from milk during early development in the rat.  相似文献   

7.
The aim of this study was to analyze zinc (Zn), calcium (Ca) and phosphorus (P) contents in milk and the lactational performance in rats fed different Ca levels. Female Wistar rats were fed during pregnancy and lactation with experimental diets containing 20% protein and high (0.90%, HCa), normal (0.60%, NCa) or low (0.20%, LCa) Ca levels. Milk samples were collected after 15 days to determine the milk mineral composition. Pup weight was recorded from birth to weaning (litter size: 6-8 pups) to determine weight gain and calculate milk production. At delivery there were no significant differences in the body weight of the pups between the groups, but at day 15, the LCa group showed lower values than both NCa and HCa groups (p<0.05). The weight gain of the LCa group was significantly lower than of the HCa and NCa groups, between delivery and day 5 (p<0.05). This reduced rate of weight gain led to the LCa group reaching weaning weight later than the other groups. Milk production (g/pup/day) was significantly lower when dams were fed the LCa than the NCa and HCa diets (p<0.05). There were no significant differences among the groups in milk Ca, P and Zn levels and Ca/P ratio. The body mineral composition of the pups at birth did not differ between the groups; at weaning, however, both LCa and HCa groups had lower element contents than the NCa group (p<0.05). In conclusion, dams fed with a diet containing low Ca levels produced smaller volumes of milk and their pups reached weaning weights later than the other groups. As the milk mineral composition was not affected, it can be hypothesized that in dams fed low dietary Ca, the smaller milk yield might have been a way of maintaining milk quality. High Ca levels affected neither pregnancy outcome nor lactational performance.  相似文献   

8.
A fostering/crossfostering analysis of the effects of maternal ethanol exposure on jejunal and ileal folate absorption was performed. Male and female rats were randomized into two groups. In the first group, ethanol-treated rats received ad libitum 5, 10 and 15% ethanol in the drinking fluid during three successive weeks. A consumption of 20% was maintained in this group for 5 additional weeks. Ethanol-treated rats were mated. Group 2 served as the control. To study the effect of chronic alcoholism during lactation or gestation separately, at birth (2nd day postpartum) control newborns were cross-fostered to ethanol dams (EG), and the pups issued from the ethanol treated mothers were cross-fostered to control dams (CG). Thus, three experimental groups of pups were formed: (1) control pups receiving no treatment during gestation and lactation (CG); (2) pups exposed to ethanol only during gestation (GG); and (3) pups exposed to ethanol only during lactation (LG). At 21 days postpartum the jejunal and distal ileum folate absorption was determined in the offspring rats by a perfusion technique. Milk folic acid levels were determined by an immunoluminometric assay. The results showed an increase in jejunal folic acid absorption in offsprings exposed to ethanol only during the lactation period (LG). However, in pups exposed to ethanol only during the gestation period (GG), the jejunal folic acid absorption was significantly increased only at concentrations of 0.25, 0.5 and 2.5 microM. No free folic acid absorption occurred in the distal ileum of control pups (CG) at day 21 at all assayed concentrations but in offsprings exposed to ethanol only during the gestation or lactation periods absorption did take place. Pups exposed to ethanol during the gestation period (GG) showed decreased values in ileum folic acid absorption at the lowest assayed concentration (0.25 microM) compared to values obtained for pups exposed to ethanol only during lactation (LG). Milk folic acid levels were significantly decreased in the ethanol-fed dams on day 21 of lactation. These results indicate that exposure of rats to ethanol during the lactation period affects more severely postnatal development of intestinal functions than ethanol exposure only during gestation. In summary, both the exposure to ethanol itself and the decrease in folic acid intake caused alterations in the function of the intestinal mucosa in the offspring, which in turn altered absorption time and development. However, the present results do not explain how ethanol stimulated intestinal absorption of folic acid in pups exposed to ethanol during the gestation or lactation periods. Further studies are needed.  相似文献   

9.
Studies using both Fisher 344 and Sprague-Dawley (SD) rat lines have shown that gestational and/or lactational maternal lead (Pb) exposure causes delayed reproductive maturation in their respective female offspring. Because these studies utilized different experimental regimens for dosing and for monitoring Pb levels, it has not been possible to determine which rat line provides the best model for low level Pb toxicity studies. This study was designed to address this issue. Adult Fisher and SD female rats were dosed with either a solution of PbAc containing 12 mg of Pb/ml or sodium acetate (NaAc) for controls. Dosing began 30 days prior to breeding and continued until their pups were weaned at 21 days of age. At the time of breeding and through weaning the blood lead (BPb) levels in the Fisher dams averaged 37.3 microg/dl and the SD dams averaged 29.9 microg/dl. Pb delayed the timing of puberty (p < 0.01) in Fisher offspring, and suppressed serum levels of luteinizing hormone (LH, p < 0.001) and estradiol (E2, p < 0.01). These effects did not occur in the SD offspring. Doubling the dose given to the SD rats increased their BPb levels to 62.6 microg/dl, yet there were still no effects noted. These results indicate that Fisher offspring are more sensitive to maternal Pb exposure with regard to puberty related insults than are SD rats, suggesting that the Fisher line may be a more reliable rodent model to study the effects of low level Pb toxicity.  相似文献   

10.
2,3,7,8-tetrachlorododibenzo-p-dioxin (TCDD) is a highly persistent trace environmental contaminant and is one of the most potent toxicants known. Exposure to TCDD has been shown to cause oxidative stress in a variety of animal models. In this study, pregnant Long Evans rats were dosed with 1 microg TCDD/kg on gestational day (GD) 15 so as to investigate oxidative stress in the liver of male pups following gestational exposure to TCDD. Lipid peroxidation (TBARS), production of reactive oxygen species (ROS), and total glutathione (GSH) were assayed to identify changes in oxidative stress parameters in the pup liver at GD 21 and postnatal days (PND) 4, 25, 32, 49, and 63. Mean ROS levels in pups were elevated at all time points tested with a significant elevation at PND 4 and PND 25. However, pup hepatic lipid peroxidation was unchanged throughout the time course. In addition, hepatic total GSH levels were not significantly changed although the means for the TCDD-treated groups were less than those of the controls at all time points except PND 49. The results indicate that although the levels of ROS are increased following gestational/lactational exposure, this increase does not translate to direct oxidative damage or significant changes to endogenous antioxidant defense mechanisms. Further investigation into the effect of gestational/lactational exposure in pups should include additional endpoints for further characterization of the time course of the response, the effect upon extrahepatic tissues, and investigation of differences between male and female offspring.  相似文献   

11.
Objective: To determine whether treatment of rat dams with oleoyl‐estrone (OE) has an effect on the offspring's long‐term response to diet restriction during lactation. Methods and Procedures: Control, OE‐treated, and diet‐restricted dams were treated up to day 15 of lactation. Changes in food intake and body weight were recorded for dams and their pups. After weaning, pups received a 4‐week standard diet followed by a 4‐week period of high‐fat diet. Lipid, protein, and energy content of pups plus energy intake and efficiency. Serum metabolites (glucose, urea, and cholesterol) and serum hormones (adiponectin, leptin, insulin, and sexual hormones). Results: Neither pups from dams in the OE‐treated nor in the diet‐restricted group showed significant changes in weight, though these two groups ingested 79% of food ingested by controls. At weaning, the pups from OE‐treated rats were smaller than those of the control or diet‐restricted groups. These pups maintained the differences in size and lipid content during the 4‐week standard‐diet period, whereas pups from diet‐restricted dams showed a sharp decrease in their lipid content. During the 4 weeks of high‐fat diet, the male offspring from OE‐treated dams increased the difference in lipid content in relation to the pups from control dams whereas in females the differences decreased. Female offspring from diet‐restricted dams showed the most marked changes in metabolite and hormone levels in relation to controls. Discussion: Treatment of lactating dams with OE programs the metabolic response of their offspring to resist the challenge of a high‐fat diet that would lead to obesity in adulthood.  相似文献   

12.
The purpose of this study was threefold: 1. to determine the long-term effects of interactions between lactational zinc deficiency and gender on bone mineral composition in repleted rat offspring, 2. to determine the nutritional efficacy of the second of two commercially designed, modified Luecke diets (ML2) during the gestational and lactational stress, and 3. determine the ultratrace element contents of Ralston Rodent Laboratory Chow #5001. The ML2 basal diet, based on dextrose, sprayed egg white, and corn oil contained 0.420 μg Zn/g, was supplemented with Zn (as zinc acetate) at 0 (diet 0ML2) or 30 (diet 30ML2) μg/g, and was mixed and pelleted commercially. all rat dams were fed the 30ML2 diet ad libitum during gestation. Beginning at parturition, the dams were fed either the 1. 0ML2, 2. 30ML2 (food restricted), or 3. 30ML2 (ad libitum) diets. All pups were fed the 30ML2 diet ad libitum from 23 to 40 d of age. From d 40 to 150, all pups were fed Ralston Rodent Laboratory Chow. The 30ML2 diet was found to be nutritionally efficacious; litter size and pup growth were normal and pup mortality was only 1.2%. Pups (ZD) with access to the 0ML2 diet until 23 d of age and nursed by dams fed the 0ML2 diet, when compared to pups (PF) fed restricted amounts of the 30ML2 diet, exhibited increased mortality and decreased concentrations of tibial zinc but no change in growth. Inadequate zinc nutriture during infancy, despite postlactational zinc repletion, induced imbalances in adult bone mineral metabolism. Thus, at 150 d of age, the ZD pups exhibited increased levels of bone P and Mg and decreased concentrations of K as compared to the PF pups.  相似文献   

13.
We examined the effect of lactational exposure to tributyltin on innate immunodefenses in the F1 generation using in vivo and in vitro experiments. Pregnant C57BL/6 mice were given drinking water containing 0, 15, or 50 microg/ml of tributyltin chloride (TBTCl) from parturition to weaning. At weaning time, offspring were inoculated with Escherichia coli K-12, and bacterial clearances from the peritoneal cavity and spleen were examined. In vivo infection experiments indicated that bacterial clearance was significantly depressed in offspring breast-fed by dams exposed to 15 microg/ml of TBTCl (15 ppm F1), but not in offspring by dams exposed to 50 microg/ml of TBTCl (50 ppm F1). In vitro functional assays revealed that the killing activity of neutrophils decreased significantly in 15 ppm F1, but not in 50 ppm F1. We suggest that lactational exposure to TBT impairs innate immunodefenses in the F1 generation against non-pathogenic bacterial infection.  相似文献   

14.
The foetal mammary gland is sensitive to maternal weight and nutrition during gestation, which could affect offspring milk production. It has previously been shown that ewes born to dams offered maintenance nutrition during pregnancy (day 21 to 140 of gestation) produced greater milk, lactose and CP yields in their first lactation when compared with ewes born to dams offered ad libitum nutrition. In addition, ewes born to heavier dams produced greater milk and lactose yields when compared with ewes born to lighter dams. The objective of this study was to analyse and compare the 5-year lactation performance of the previously mentioned ewes, born to heavy or light dams that were offered maintenance or ad libitum pregnancy nutrition. Ewes were milked once per week, for the first 6 weeks of their lactation, for 5 years. Using milk yield and composition data, accumulated yields were calculated over a 42-day period for each year for milk, milk fat, CP, true protein, casein and lactose using a Legendre orthogonal polynomial model. Over the 5-year period, ewes born to heavy dams produced greater average milk (P=0.04), lactose (P=0.01) and CP (P=0.04) yields than offspring born to light dams. In contrast, over the 5-year period dam nutrition during pregnancy did not affect average (P>0.05) offspring milk yields or composition, but did increase milk and lactose accumulated yield (P=0.03 and 0.01, respectively) in the first lactation. These results indicate that maternal gestational nutrition appears to only affect the first lactational performance of ewe offspring. Neither dam nutrition nor size affected grand-offspring live weight gain to, or live weight at weaning (P>0.05). Combined these data indicate that under the conditions of the present study, manipulating dam weight or nutrition in pregnancy can have some effects of offspring lactational performance, however, these effects are not large enough to alter grand-offspring growth to weaning. Therefore, such manipulations are not a viable management tool for farmers to influence lamb growth to weaning.  相似文献   

15.
Previously, we have shown that maternal smoke exposure during lactation, even when pups are not exposed, affects biochemical profiles in the offspring at weaning, eliciting lower body adiposity, hyperinsulinemia, hypocorticosteronemia and lower adrenal catecholamine content. However, the future impact of tobacco exposure is still unknown. As postnatal nicotine exposure causes short- and long-term effects on pups' biochemistry and endocrine profiles, we have now evaluated some endocrine and metabolic parameters of the adult offspring whose mothers were tobacco exposed during lactation. For this, from day 3 to 21 of lactation, rat dams were divided in: 1) SE group, cigarette smoke-exposed (1.7 mg nicotine/cigarettes for 1 h, 4 times/day, daily), without their pups, and 2) C group, exposed to air, in the same conditions. Offspring were killed at 180-days-old. Body weight and food intake were evaluated. Blood, white adipose tissue, adrenal, and liver were collected. All significant data were p<0.05. The adult SE offspring showed no change in body weight, cumulative food intake, serum hormone profile, serum lipid profile, or triglycerides content in liver. However, in adrenal gland, adult SE offspring showed lower catecholamine content ( - 50%) and lower tyrosine hydroxylase protein expression ( - 56%). Despite the hormonal alterations during lactation, tobacco smoke exposure through breast milk only programmed the adrenal medullary function at adulthood and this dysfunction can have consequence on stress response. Thus, an environment free of smoke during lactation period is essential to improve health outcomes in adult offspring.  相似文献   

16.
The purpose of this study was to determine the relationship between concentrations of Zn and Cu and the activities of superoxide dismutase and glutathione peroxidase in the heart and liver of young rat pups whose dams were fed a diet supplemented with caffeine and/or Zn. Four groups of dams with their newborn pups were fed one of the following diets for 22 d: 20% protein basal diet; the basal diet supplemented with caffeine (2 mg/100 body wt); the basal diet supplemented with Zn (300 mg/kg diet); or the basal diet supplemented with caffeine plus Zn. The Cu levels in the livers of the pups were decreased by maternal intake of the caffeine and Zn diet. The maternal intake of the caffeine diet increased Mn-superoxide dismutase (MnSOD) activity and Cu, Zn-superoxide dismutase (CUZnSOD) in the heart of the pups. On the other hand, the activity of Cu,ZnSOD was significantly reduced in the liver of pups whose dams consumed a caffeine, Zn, or caffeine plus Zn diet. Cu, ZnSOD activity in the liver of the pups seems to be correlated with Cu levels in the tissue. Selenium-dependent glutathione peroxidase (GSH-Px) activities in the heart and liver showed no difference among the groups. The effect of dietary caffeine and/or Zn on the activity of antioxidant enzymes in the heart and liver were different in young rats. The activities of these enzymes in the heart were lower than in the liver of 22-d-old rats. Our experiments indicate that the heart has limited defenses against the toxic effects of peroxides when compared to the liver.  相似文献   

17.
Chromium picolinate, Cr(pic)3, a popular dietary supplement marketed as an aid in fat loss and lean muscle gain, has also been suggested as a therapy for women with gestational diabetes. The current study investigated the effects of maternal exposure to Cr(pic)3 and picolinic acid during gestation and lactation on neurological development of the offspring. Mated female CD-1 mice were fed diets from implantation through weaning that were either untreated or that contained Cr(pic)3 (200 mg kg(-1) day(-1)) or picolinic acid (174 mg kg(-1) day(-1)). A comprehensive battery of postnatal tests was administered, including a modified Fox battery, straight-channel swim, open-field activity, and odor-discrimination tests. Pups exposed to picolinic acid tended to weigh less than either control or Cr(pic)3-exposed pups, although the differences were not significant. Offspring of picolinic acid-treated dams also appeared to display impaired learning ability, diminished olfactory orientation ability, and decreased forelimb grip strength, although the differences among the treatment groups were not significant. The results indicate that there were no significant effects on the offspring with regard to neurological development from supplementation of the dams with either Cr(pic)3 or picolinic acid.  相似文献   

18.
双酚A(bisphenol-A,BPA)对脑和行为发育的低剂量效应已引起广泛关注。本研究分别于妊娠最后2周和分娩后前2周母鼠灌胃BPA(0.4和4 mg/kg.d),然后以旷场、高架十字迷宫、明暗箱、镜子迷宫、强迫游泳和被动回避箱等模型,分别测试幼年期(生后21~28 d)子代小鼠的行为,探讨围生期不同阶段的BPA暴露对幼年仔鼠自发活动、探究、焦虑、抑郁和被动回避记忆等行为的影响。结果表明,围生期不同阶段的BPA暴露对这些行为的影响不同,主要表现为:妊娠期BPA暴露促进幼年仔鼠的活动性,减弱其焦虑状态,提高雄性仔鼠的探究能力,促进雌性仔鼠的被动回避记忆;哺乳期BPA暴露减少幼年仔鼠的活动性,但对其焦虑行为的影响相对较弱,不影响仔鼠的探究能力和被动回避记忆;而妊娠期和哺乳期BPA暴露均加剧幼年仔鼠的抑郁行为。以上结果提示,妊娠期和哺乳期BPA暴露均可影响幼年仔鼠的焦虑、抑郁、被动回避记忆等多种行为,而妊娠期可能是BPA影响的更敏感时期。  相似文献   

19.
We aimed to investigate the effect of maternal exposure to NaF on mandibular bone microarchitecture and phosphocalcic plasma parameters of the offspring. For this purpose, 10-, 15-, and 21-day-old pups (n?=?6–8 per group) from two groups of mothers, control and NaF 50mg/L treated dams, were used. Plasma calcium (Ca) and phosphorus (P) levels and alkaline phosphatase activity (ALP) were measured. Fluoride concentration (F?) in bone and in stomach content was measured using potentiometry after isothermal distillation. Morphometric, histological, and histomorphometric analyses of the jaw bones were performed. Plasma Ca and P levels and ALP activity increased in 10-day and decreased in 21-day-old pups from NaF-treated mothers. Fluoride concentration in stomach content samples of 15- and 21-day-old nursing pups from mothers exposed to NaF in their drinking water was higher compared to that observed in control dam offspring. Mandibular F? content was higher in 21-day-old pups born to F?-exposed dams compared to those observed in age-matched control pups. Mandibular area increased in 21-day-old pups born to treated mothers as compared to controls. Mandibular bone volume BV/TV (%) was higher in offspring from NaF-exposed dams than in controls at all the studied times. The increase in bone volume after exposure to F? was concomitant with the increase in trabecular thickness and the decrease in trabecular separation. Altogether, our results showed that exposure to NaF during gestation and lactation increased mandibular area and bone volume of pups, with concomitant changes in phosphocalcic parameters associated with the bone modeling process.  相似文献   

20.
Although supranutrition of selenium (Se) is considered a promising anti-cancer strategy, recent human studies have shown an intriguing association between high body Se status and diabetic risk. This study was done to determine if a prolonged high intake of dietary Se actually induced gestational diabetes in rat dams and insulin resistance in their offspring. Forty-five 67-day-old female Wistar rats (n=15/diet) were fed a Se-deficient (0.01 mg/kg) corn-soy basal diet (BD) or BD+Se (as Se-yeast) at 0.3 or 3.0mg/kg from 5 weeks before breeding to day 14 postpartum. Offspring (n=8/diet) of the 0.3 and 3.0mg Se/kg dams were fed with the same respective diet until age 112 days. Compared with the 0.3mg Se/kg diet, the 3.0mg/kg diet induced hyperinsulinemia (P<0.01), insulin resistance (P<0.01), and glucose intolerance (P<0.01) in the dams at late gestation and/or day 14 postpartum and in the offspring at age 112 days. These impairments concurred with decreased (P<0.05) mRNA and/or protein levels of six insulin signal proteins in liver and muscle of dams and/or pups. Dietary Se produced dose-dependent increases in Gpx1 mRNA or GPX1 activity in pancreas, liver, and erythrocytes of dams. The 3.0mg Se/kg diet decreased Selh (P<0.01), Sepp1 (P=0.06), and Sepw1 (P<0.01), but increased Sels (P<0.05) mRNA levels in the liver of the offspring, compared with the 0.3mg Se/kg diet. In conclusion, supranutrition of Se as a Se-enriched yeast in rats induced gestational diabetes and insulin resistance. Expression of six selenoprotein genes, in particular Gpx1, was linked to this metabolic disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号