首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Many gram-negative bacteria employ N-acylhomoserine lactones (AHL) to regulate diverse physiological processes in concert with cell population density (quorum sensing [QS]). In the plant pathogen Erwinia carotovora, the AHL synthesized via the carI/expI genes are responsible for regulating the production of secreted plant cell wall-degrading exoenzymes and the antibiotic carbapen-3-em carboxylic acid. We have previously shown that targeting the product of an AHL synthase gene (yenI) from Yersinia enterocolitica to the chloroplasts of transgenic tobacco plants caused the synthesis in planta of the cognate AHL signaling molecules N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL), which in turn, were able to complement a carI-QS mutant. In the present study, we demonstrate that transgenic potato plants containing the yenI gene are also able to express AHL and that the presence and level of these AHL in the plant increases susceptibility to infection by E. carotovora. Susceptibility is further affected by both the bacterial level and the plant tissue under investigation.  相似文献   

2.
N-acylhomoserine lactones (AHLs) are conserved signal molecules that control diverse biological activities in quorum sensing system of Gram-negative bacteria. Recently, several soil bacteria were found to degrade AHLs, thereby interfering with the quorum sensing system. Previously, Rhodococcus erythropolis W2 was reported to degrade AHLs by both oxido-reductase and AHL-acylase. In the present study, two AHL-utilizing bacteria, strains LS31 and PI33, were isolated and identified as the genus Rhodococcus. They exhibited different AHL-utilization abilities: Rhodococcus sp. strain LS31 rapidly degraded a wide range of AHLs, including N-3-oxo-hexanoyl-l-homoserine lactone (OHHL), whereas Rhodococcus sp. strain PI33 showed relatively less activity towards 3-oxo substituents. Coculture of strain LS31 with Erwinia carotovora effectively reduced the amount of OHHL and pectate lyase activity, compared with coculture of strain PI33 with E. carotovora. A mass spectrometry analysis indicated that both strains hydrolyzed the lactone ring of AHL to generate acylhomoserine, suggesting that AHL-lactonases (AHLases) from the two Rhodococcus strains are involved in the degradation of AHL, in contrast to R. erythropolis W2. To the best of our knowledge, this is the first report on AHLases of Rhodococcus spp.  相似文献   

3.
In the process of evaluating the role of acylated homoserine lactones (AHLs) in food-spoiling Gram-negative bacteria, we have combined a range of bacterial AHL monitor systems to determine the AHL-profile and the kinetics of AHL-production. AHL production from 148 strains of Enterobacteriaceae isolated from foods was tested using Escherichia coli pSB403 (LuxR), Agrobacterium tumefaciens A136 (TraR) and both induction and inhibition of Chromobacterium violaceum CV026 (CviR). All strains except one was found to produce AHL(s). In no case could a single monitor system identify more than 64% of the Enterobacteriaceae as AHL-producers, showing that the simultaneous use of monitor strains is required in the process of screening bacterial populations for AHL-production. AHLs from 20 selected strains were profiled by thin layer chromatography. Most strains produced more than one AHL with 3-N-oxo-hexanoyl homoserine lactone being the most prominent. It was found that the simultaneous use of monitor strains in the top-layer was necessary for the detection of (presumably) all the AHLs. An agar well-diffusion assay based on A. tumefaciens pDZLR4 was used for quantifying AHLs from bacterial supernatants and enabled an assessment of the kinetics of AHL-production of 3 strains (Serratia proteamaculans strain B5a, Erwinia carotovora ATCC 39048 and V. fischeri strain MJ-1). As expected, the production of AHL (OHHL) and luminescence in Vibrio fischeri strain MJ-1 increased faster than growth indicating up-regulation of the AHL regulated phenotype and auto-induction of AHL production. In contrast, production kinetics of AHL (OHHL) in the two Enterobacteriaceae indicated lack of auto-induction.  相似文献   

4.
A bacterium C1010, isolated from the rhizospheres of cucumbers in fields in Korea, degraded the microbial quorum-sensing molecules, hexanoyl homoserine lactone (HHSL), and octadecanoyl homoserine lactone (OHSL). Morphological characteristics and 16S rRNA sequence analysis identified C1010 as Acinetobacter sp. strain C1010. This strain was able to degrade the acyl-homoserine lactones (AHLs) produced by the biocontrol bacterium, Pseudomonas chlororaphis O6, and a phytopathogenic bacterium, Burkholderia glumae. Co-cultivation studies showed that the inactivation of AHLs by C1010 inhibited production of phenazines by P. chlororaphis O6. In virulence tests, the C1010 strain attenuated soft rot symptom caused by Erwinia carotovora ssp. carotovora. We suggest Acinetobacter sp. strain C1010 could be a useful bacterium to manipulate biological functions that are regulated by AHLs in various Gram-negative bacteria.  相似文献   

5.
One mechanism that bacteria have adopted to regulate the production of antimicrobial compounds is population-density-dependent LuxRI-type quorum sensing (QS), exploiting the production of N-acyl homoserine lactone (AHL) autoinducer signals. In biocontrol bacteria, most known cases involve the AHL control of phenazine antibiotics production by rhizospheric pseudomonads. This work is the first to demonstrate that phenazines are not the only group of biocontrol-related antibiotics whose production is regulated by QS systems. Strain HRO-C48 of Serratia plymuthica isolated from the rhizosphere of oilseed rape and described as a chitinolytic bacterium, which protects crops against Verticillium wilt, was also shown to produce wide-range antibiotic pyrrolnitrin and several AHLs, including N-butanoyl-HSL, N-hexanoyl-HSL and N-3-oxo-hexanoyl-HSL (OHHL). The genes splI and splR, which are analogues of luxI and luxR genes from other Gram-negative bacteria, were cloned and sequenced. The mutant AHL-4 (splI::miniTn5) was simultaneously deficient in the production of AHLs and pyrrolnitrin, as well as in its ability to suppress the growth of several fungal plant pathogens in vitro. However, pyrrolnitrin production could be restored in this mutant by introduction of the splIR genes cloned into a plasmid or by addition of the conditioned medium from strain C48 or OHHL standard to the growth medium.  相似文献   

6.
The rhizosphere-associated bacterium Serratia plymuthica HRO-C48 is not only able to suppress symptoms caused by soil-borne pathogens but is also able to stimulate growth of plants. Detailed knowledge about the underlying mechanisms and regulation are crucial for the application in biocontrol strategies. To analyse the influence of N -acyl homoserine lactone (AHL)-mediated communication on the biocontrol activity, the AHL-degrading lactonase AiiA was heterologously expressed in the strain, resulting in abolished AHL production. The comparative analysis of the wild type and AHL negative mutants led to the identification of new AHL-regulated phenotypes. In the pathosystem Verticillium dahliae –oilseed rape, the essential role of AHL-mediated signaling for disease suppression was demonstrated. In vitro , the regulatory function of AHLs in the synthesis of the plant growth hormone indole-3-acetic acid is shown for the first time. Additionally, swimming motility was found to be negatively AHL regulated. In contrast, production of extracellular hydrolytic enzymes is shown to be positively AHL-regulated. HRO-C48 emits a broad spectrum of volatile organic compounds that are involved in antifungal activity and, interestingly, whose relative abundances are influenced by quorum sensing (QS). This study shows that QS is crucial for biocontrol activity of S. plymuthica and discusses the impact for the application of the strain as a biocontrol agent.  相似文献   

7.
Zoospores of the eukaryotic green seaweed Ulva respond to bacterial N-acylhomoserine lactone (AHL) quorum sensing signal molecules for the selection of surface sites for permanent attachment. In this study we have investigated the production and destruction of AHLs in biofilms of the AHL-producing marine bacterium, Vibrio anguillarum and their stability in seawater. While wild type V. anguillarum NB10 was a strong attractor of zoospores, inactivation of AHL production in this strain by either expressing the recombinant Bacillus lactonase coding gene aiiA, or by mutating the AHL biosynthetic genes, resulted in the abolition of zoospore attraction. In seawater, with a pH of 8.2, the degradation of AHL molecules was temperature-dependent, indicating that the AHLs produced by marine bacterial biofilms have short half-lives. The Ulva zoospores sensed a range of different AHL molecules and in particular more zoospores settled on surfaces releasing AHLs with longer (>six carbons) N-linked acyl chains. However, this finding is likely to be influenced by the differential diffusion rates of AHLs from the experimental surface matrix. Molecules with longer N-acyl chains, such as N-(3-oxodecanoyl)- L-homoserine lactone, diffused more slowly than those with shorter N-acyl chains such as N-(3-hydroxy-hexanoyl)- L-homoserine lactone. Image analysis using GFP-tagged V. anguillarum biofilms revealed that spores settle directly on bacterial cells and in particular on microcolonies which we show are sites of concentrated AHL production.  相似文献   

8.
9.
Two Gram-negative, plant growth-promoting rhizobacteria (PGPRs), denominated as M12 and M14, were classified by 16S rDNA sequencing as Burkholderia graminis species. Both strains were shown to produce a variety of N-acyl-homoserine lactone (AHL) quorum sensing (QS) signalling molecules. The involvement of these molecules in plant growth promotion and the induction of protection against salt stress was examined. AHL production was evaluated in vitro by thin-layer chromatography using AHL biosensors, and the identity of the AHLs produced was determined by liquid chromatography-tandem mass spectrometry. The in situ production of AHLs by M12 and M14 in the rhizosphere of Arabidopsis thaliana plants was detected by co-inoculation with green fluorescent protein-based biosensor strains and confocal laser scanning microscopy. To determine whether plant growth promotion and protection against salt stress were mediated by QS, these PGPRs were assayed on wild-type tomato plants, as well as their corresponding transgenics expressing YenI (short-chain AHL producers) and LasI (long-chain AHL producers). In wild-type tomato plants, only M12 promoted plant growth, and this effect disappeared in both transgenic lines. In contrast, M14 did not promote growth in wild-type tomatoes, but did so in the LasI transgenic line. Resistance to salt stress was induced by M14 in wild-type tomato, but this effect disappeared in both transgenic lines. The strain M12, however, did not induce salt resistance in wild-type tomato, but did so in LasI tomato plants. These results reveal that AHL QS signalling molecules mediate the ability of both PGPR strains M12 and M14 to promote plant growth and to induce protection against salt stress.  相似文献   

10.
Pseudomonas aureofaciens 30-84 is a soilborne bacterium that colonizes the wheat rhizosphere. This strain produces three phenazine antibiotics which suppress take-all disease of wheat by inhibition of the causative agent Gaeumannomyces graminis var. tritici. Phenazines also enhance survival of 30-84 within the wheat rhizosphere in competition with other organisms. Expression of the phenazine biosynthetic operon is controlled by the phzR/phzI N-acyl-homoserine lactone (AHL) response system (L. S. Pierson III et al., J. Bacterial 176:3966-3974, 1994; D. W. Wood and L. S. Pierson III, Gene 168:49-53, 1996). By using high-pressure liquid chromatography coupled with high-resolution mass spectrometry, the AHL produced by PhzI has now been identified as N-hexanoyl-homoserine lactone (HHL). In addition, the ability of HHL to serve as an interpopulation signal molecule in the wheat rhizosphere has been examined by using isogenic reporter strains. Disruption of phzI reduced expression of the phenazine biosynthetic operon 1,000-fold in the wheat rhizosphere. Coinoculation of an isogenic strain which produced the endogenous HHL signal restored phenazine gene expression in the phzI mutant to wild-type levels in situ. These results demonstrate that HHL is required for phenazine expression in situ and is an effective interpopulation signal molecule in the wheat rhizosphere.  相似文献   

11.
带cry3Aa启动子的aiiA基因在苏云金芽胞杆菌中的表达   总被引:12,自引:0,他引:12  
N 乙酰高丝氨酸内酯 (N acyl homoserinelactones,AHLs) ,是一类数量感知 (Quorum sensing)系统中的信号分子 ,它参与诱导调控许多植物病原菌致病基因的表达。苏云金芽胞杆菌的AiiA蛋白能降解这类AHLs分子 ,进而可减弱病原菌致病基因表达产生的病害。苏云金芽胞杆菌杀虫晶体蛋白基因cry3Aa的启动子是一种不依赖芽胞形成的启动子 ,它相对于其它cry类基因的启动子有启动基因转录时间早 ,转录时间长的优点。通过重叠延伸PCR ,用杀虫晶体蛋白基因cry3Aa启动子替换编码AiiA蛋白的基因aiiA自身的启动子 ,构建了融合基因pro3A aiiA。将融合基因装入穿梭载体pHT3 0 4的BamHI SphI位点 ,得到重组质粒pBMB686并转化苏云金芽胞杆菌无晶体突变株BMB171,重组菌株BMB686的AiiA蛋白表达量在各个生长时期均高于对照菌株 ,对AHLs分子的降解活性和对胡萝卜软腐欧文氏菌感染马铃薯产生病害的抑制能力也明显优于对照菌株  相似文献   

12.
经初步鉴定,假单胞菌株(Pseudomonassp.)M18至少能产生5种N-酰基高丝氨酸内酯类(N-acyl-homoserinelactones,AHLs)信号分子,它们是:N-丁酰高丝氨酸内酯(N-butyryl-L-homoserine lactone,C4-HSL,BHL)、N-己酰高丝氨酸内酯(N-hexanoyl-L-homoserine lactone,C6-HSL,HHL)、N-3-氧-己酰高丝氨酸内酯[N-(3-oxohexanoyl)-L-homoserinelactone,3-Oxo-C6-HSL,OHHL]、N-3-氧-辛酰高丝氨酸内酯[N-(3-oxooctanoyl)-L-homoserine lactone,3-Oxo-C8-HSL,OOHL]和N-3-氧-癸酰高丝氨酸内酯[N-(3-oxodecanoyl)-L-homoserine lactone,3-Oxo-C10-HSL,ODHL)。在gacA突变菌株M18G中,信号分子的积累量明显减少,且只能检测出其中的4种;同时,吩嗪-1-羧酸(Phenazine-1-carboxylic acid,PCA)的合成量比野生株M18提高了2倍左右。在M18菌株中,基因rhlⅠ的编码产物参与BHL和HHL的合成。构建rhlI’-’lacZ翻译融合表达质粒pMEIZ,分别导入野生株M18和突变株M18G,突变株M18G的半乳糖苷酶活性比野生株M18下降约40%,表明GacA对基因rhlI的表达具有正调控作用。但是,在野生株M18和突变株M18G的发酵液中,分别或同时添加过量的外源BHL和HHL,对PCA合成的影响不显著,表明在突变株M18G中,PCA合成量的增加与BHL和HHL合成量的减少没有明显的相关性。  相似文献   

13.
Given that a large proportion of the bacteria colonizing the roots of plants is capable of producing N-acyl-L-homoserine lactone (AHL) molecules, it appears likely that these bacterial pheromones may serve as signals for communication between cells of different species. In this study, we have developed and characterized novel Gfp-based monitor strains that allow in situ visualization of AHL-mediated communication between individual cells in the plant rhizosphere. For this purpose, three Gfp-based AHL sensor plasmids that respond to different spectra of AHL molecules were transferred into AHL-negative derivatives of Pseudomonas putida IsoF and Serratia liquefaciens MG1, two strains that are capable of colonizing tomato roots. These AHL monitor strains were used to visualize communication between defined bacterial populations in the rhizosphere of axenically grown tomato plants. Furthermore, we integrated into the chromosome of AHL-negative P. putida strain F117 an AHL sensor cassette that responds to the presence of long-chain AHLs with the expression of Gfp. This monitor strain was used to demonstrate that the indigenous bacterial community colonizing the roots of tomato plants growing in nonsterile soil produces AHL molecules. The results strongly support the view that AHL signal molecules serve as a universal language for communication between the different bacterial populations of the rhizosphere consortium.  相似文献   

14.
In gram-negative bacteria, many important changes in gene expression and behavior are regulated in a population density-dependent fashion by N-acyl homoserine lactone (AHL) signal molecules. Exudates from pea (Pisum sativum) seedlings were found to contain several separable activities that mimicked AHL signals in well-characterized bacterial reporter strains, stimulating AHL-regulated behaviors in some strains while inhibiting such behaviors in others. The chemical nature of the active mimic compounds is currently unknown, but all extracted differently into organic solvents than common bacterial AHLs. Various species of higher plants in addition to pea were found to secrete AHL mimic activities. The AHL signal-mimic compounds could prove to be important in determining the outcome of interactions between higher plants and a diversity of pathogenic, symbiotic, and saprophytic bacteria.  相似文献   

15.
In order to cope with pathogens, plants have evolved sophisticated mechanisms to sense pathogenic attacks and to induce defence responses. The N‐acyl‐homoserine lactone (AHL)‐mediated quorum sensing in bacteria regulates diverse physiological processes, including those involved in pathogenicity. In this work, we study the interactions between AHL‐producing transgenic tobacco plants and Pseudomonas syringae pv. tabaci 11528 (P. syringae 11528). Both a reduced incidence of disease and decrease in the growth of P. syringae 11528 were observed in AHL‐producing plants compared with wild‐type plants. The present data indicate that plant‐produced AHLs enhance disease resistance against this pathogen. Subsequent RNA‐sequencing analysis showed that the exogenous addition of AHLs up‐regulated the expression of P. syringae 11528 genes for flagella production. Expression levels of plant defence genes in AHL‐producing and wild‐type plants were determined by quantitative real‐time polymerase chain reaction. These data showed that plant‐produced AHLs activated a wide spectrum of defence responses in plants following inoculation, including the oxidative burst, hypersensitive response, cell wall strengthening, and the production of certain metabolites. These results demonstrate that exogenous AHLs alter the gene expression patterns of pathogens, and plant‐produced AHLs either directly or indirectly enhance plant local immunity during the early stage of plant infection.  相似文献   

16.
17.
Gram-negative bacteria most often use N-acyl homoserine lactones (AHLs) as intercellular quorum-sensing signal molecules. In this study, it was demonstrated that rice plants contain AHL mimic molecules that are very sensitive to the highly specific AiiA lactonase enzyme and can activate three different AHL bacterial biosensors, indicating that the compounds have a homoserine lactone structure and could be AHLs. The possible source and biological significance of this finding are discussed.  相似文献   

18.
It is commonly known that bacteria may produce antibiotics to interfere with the normal biological functions of their competitors in order to gain competitive advantages. Here we report that Bacillus thuringiensis suppressed the quorum-sensing-dependent virulence of plant pathogen Erwinia carotovora through a new form of microbial antagonism, signal interference. E. carotovora produces and responds to acyl-homoserine lactone (AHL) quorum-sensing signals to regulate antibiotic production and expression of virulence genes, whereas B. thuringiensis strains possess AHL-lactonase, which is a potent AHL-degrading enzyme. B. thuringiensis did not seem to interfere with the normal growth of E. carotovora; rather, it abolished the accumulation of AHL signal when they were cocultured. In planta, B. thuringiensis significantly decreased the incidence of E. carotovora infection and symptom development of potato soft rot caused by the pathogen. The biocontrol efficiency is correlated with the ability of bacterial strains to produce AHL-lactonase. While all the seven AHL-lactonase-producing B. thuringiensis strains provided significant protection against E. carotovora infection, Bacillus fusiformis and Escherichia coli strains that do not process AHL-degradation enzyme showed little effect in biocontrol. Mutation of aiiA, the gene encoding AHL-lactonase in B. thuringiensis, resulted in a substantial decrease in biocontrol efficacy. These results suggest that signal interference mechanisms existing in natural ecosystems could be explored as a new version of antagonism for prevention of bacterial infections.  相似文献   

19.
20.
In Pseudomonas aeruginosa , synthesis of the quorum-sensing signal molecules N -butanoyl- L -homoserine lactone (BHL) and N -hexanoyl- L -homoserine lactone (HHL) requires the LuxI homologue RhlI(VsmI). By using thin-layer chromatography in conjunction with high-performance liquid chromatography (HPLC) and mass spectrometry, we show that purified RhlI can catalyse the biosynthesis of BHL and HHL using either S -adenosylmethionine (SAM) or homoserine lactone (HSL) but not homoserine as the source of the homoserine lactone moiety. As we were unable to detect homoserine lactone in cytoplasmic extracts of Escherichia coli , we conclude that SAM is the natural substrate for RhlI-directed N -acylhomoserine lactone (AHL) biosynthesis. The N -acyl chain of BHL and HHL can be supplied by the appropriately charged coenzyme A derivative (either n -butanoyl-CoA or n -hexanoyl-CoA). The specificity of RhlI for charged CoA derivatives is demonstrated as RhlI was unable to generate AHLs detectable in our bioassays from acetyl-CoA, malonyl-CoA, n -octanoyl-CoA, n -decanoyl-CoA, DL-β-hydroxybutanoyl-CoA or crotonoyl-CoA. RhlI was also unable to use N -acetyl- S -3-oxobutanoylcysteamine, a chemical mimic for 3-oxobutanoyl-CoA. Furthermore, the RhlI-catalysed synthesis of BHL and HHL was most efficiently driven when NADPH was included in the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号