首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The E1B 55-kDa oncoprotein of adenovirus enables the virus to overcome restrictions imposed on viral replication by the cell cycle. Approximately 20% of HeLa cells infected with an E1B 55-kDa mutant adenovirus produced virus when evaluated by electron microscopy or by assays for infectious centers. By contrast, all HeLa cells infected with a wild-type adenovirus produced virus. The yield of E1B mutant virus from randomly cycling HeLa cells correlated with the fraction of cells in S phase at the time of infection. In synchronously growing HeLa cells, approximately 75% of the cells infected during S phase with the E1B mutant virus produced virus, whereas only 10% of the cells infected during G1 produced virus. The yield of E1B mutant virus from HeLa cells infected during S phase was sevenfold greater than that of cells infected during G1 and threefold greater than that of cells infected during asynchronous growth. Cells infected during S phase with the E1B mutant virus exhibited severe cytopathic effects, whereas cells infected with the E1B mutant virus during G1 exhibited a mild cytopathic effect. Viral DNA synthesis appeared independent of the cell cycle because equivalent amounts of viral DNA were synthesized in cells infected with either wild-type or E1B mutant virus. The inability of the E1B mutant virus to replicate was not mediated by the status of p53. These results define a novel property of the large tumor antigen of adenovirus in relieving growth restrictions imposed on viral replication by the cell cycle.  相似文献   

2.
Clones of chicken embryo fibroblasts exogenously infected with the endogenous avian retrovirus were analyzed to examine the replication of this virus in permissive (Gr+) and nonpermissive (Gr-) cells. The results demonstrate that the endogenous virus was capable of infecting both Gr+ and Gr- cells with equal efficiency. Infected clones of Gr+ and Gr- cells differed, however, in two significant ways. At the time of their initial characterization, the Gr+ clones produced 100- to 1,000-fold more virus than the Gr- clones. Further, the amount of virus produced by Gr+ clones did not change significantly during serial passage of the cells. In contrast, continued passage of the infected Gr- clones resulted in a gradual increase in the amount of virus produced. Individual clones of infected Gr- cells produced infectious virus at rates that, initially, differed by a factor of more than 10(4). The large differences in the production of virus by these clones could not be explained by equally large differences in the number of infected cells within the clonal populations. Greater than 80% of the clonal populations examined ultimately produced virus at rates that were not significantly different from the rates observed in infected Gr+ cells. Virus produced by these infected Gr- cells exhibited the same restricted replication upon establishing a new infection in nonpermissive cells. Analysis of the appearance of free and integrated viral DNA sequences during endogenous virus infection of Gr+ and Gr- cells demonstrated that, after an initial delay in the synthesis of free viral DNA in Gr- cells, the nonpermissive cells ultimately acquired as many integrated viral DNA sequences as were found in infected Gr+ cells. These results indicate that a majority of the infectious particles of the endogenous virus are capable of establishing infection in a Gr- cell and, ultimately, of producing virus at a rate that is not significantly different from that produced by infected Gr+ cells. The virus produced from the Gr- cells is not a stable genetic variant of the original endogenous virus that is capable of unrestricted replication in nonpermissive cells. The reduced efficiency with which the endogenous virus initially replicates in nonpermissive cells and the increased length of time required for infected Gr- cells to produce maximal virus titers suggest that the endogenous virus may utilize a different mechanism of replication in Gr+ and Gr- fibroblasts.  相似文献   

3.
The role of signaling pathways including the mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3K) during viral infection has gained much recent attention. Our laboratory reported on an important regulatory role for extracellular signal-regulated kinases (ERK1/2), subfamily members of the MAPKs, during coxsackievirus B3 (CVB3) infection. However, the role of the PI3K pathway in CVB3 infection has not been well characterized. CVB3 is the most common known viral infectant of heart muscle that directly injures and kills infected cardiac myocytes during the myocarditic process. In the present study, we investigated the role of protein kinase B (PKB) (also known as Akt), a general downstream mediator of survival signals through the PI3K cascade, in regulating CVB3 replication and virus-induced apoptosis in a well-established HeLa cell model. We have demonstrated that CVB3 infection leads to phosphorylation of PKB/Akt on both Ser-473 and Thr-308 residues through a PI3K-dependent mechanism. Transfection of HeLa cells with a dominant negative mutant of Akt1 or pretreatment of wild-type HeLa cells with the specific PI3K inhibitor LY294002 significantly suppresses viral RNA expression, as reflected in diminished viral capsid protein expression and viral release. Dominant negative Akt1 and LY294002 also increase apoptosis in infected cells, which can be reversed by addition of the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk). Interestingly, blocking of apoptosis by zVAD.fmk does not reverse the viral RNA translation blockade, indicating that the inhibitory effect of dominant negative Akt1 on viral protein expression is not caspase dependent. In addition, we showed that the attachment of virus to its receptor-coreceptor complex is not sufficient for PKB/Akt activation and that postentry viral replication is required for Akt phosphorylation. Taken together, these data illustrate a new and imperative role for Akt in CVB3 infection in HeLa cells and show that the PI3K/Akt signaling is beneficial to CVB3 replication.  相似文献   

4.
An understanding of the viral replication process commonly referred to as "plaque growth" is developed in the context of a reaction-diffusion model. The interactions among three components: the virus, the healthy host, and the infected host are represented using rates of viral adsorption and desorption to the cell surface, replication and release by host lysis, and diffusion. The solution to the full model reveals a maximum in the dependence of the velocity of viral propagation on its equilibrium adsorption constant, suggesting that conditions can be chosen where viruses which adsorb poorly to their hosts will replicate faster in plaques than those which adsorb well. Analytic expressions for the propagation velocity as a function of the kinetic and diffusion parameters are presented for the limiting cases of equilibrated adsorption, slow adsorption, fast adsorption, and large virus yields. Hindered diffusion at high host concentrations must be included for quantitative agreement with experimental data.  相似文献   

5.
Indirect immunostaining of avian reovirus S1133-infected L-cell monolayers showed that most of the cells can support viral replication. However, the number of cells in which the virus was actually replicating depended on the multiplicity of virus infection. The presence of actinomycin D during infection increased viral protein synthesis, viral growth, and the number of actively infected cells at late infection times. The antibiotic elicited these effects by triggering viral replication in cells that already contained unproductive cytoplasmic virus but that would not get productively infected in the absence of the drug. From these results, we propose a model for the interaction between L cells and avian reovirus S1133 in which viral versus host mRNA competition for the translational machinery determines the fate of the virus infection.  相似文献   

6.
Many steps of viral replication are dependent on the interaction of viral proteins with host cell components. To identify rhinovirus proteins involved in such interactions, human rhinovirus 39 (HRV39), a virus unable to replicate in mouse cells, was adapted to efficient growth in mouse cells producing the viral receptor ICAM-1 (ICAM-L cells). Amino acid changes were identified in the 2B and 3A proteins of the adapted virus, RV39/L. Changes in 2B were sufficient to permit viral growth in mouse cells; however, changes in both 2B and 3A were required for maximal viral RNA synthesis in mouse cells. Examination of infected HeLa cells by electron microscopy demonstrated that human rhinoviruses induced the formation of cytoplasmic membranous vesicles, similar to those observed in cells infected with other picornaviruses. Vesicles were also observed in the cytoplasm of HRV39-infected mouse cells despite the absence of viral RNA replication. Synthesis of picornaviral nonstructural proteins 2C, 2BC, and 3A is known to be required for formation of membranous vesicles. We suggest that productive HRV39 infection is blocked in ICAM-L cells at a step posttranslation and prior to the formation of a functional replication complex. The observation that changes in HRV39 2B and 3A proteins lead to viral growth in mouse cells suggests that one or both of these proteins interact with host cell proteins to promote viral replication.  相似文献   

7.
The growth of poliovirus in a HeLa cell culture persistently infected with the hemagglutinating virus of Japan (HVJ, the Sendai strain of parainfluenza 1 virus) (HeLaHVJ) was studied. Plaques produced by poliovirus on HeLaHVJ cell monolayers were hazier, smaller and fewer than those on HeLa cells. HeLaHVJ cells were indistinguishable from normal HeLa cells with respect to adsorption rate and penetration efficiency of poliovirus. Extracellular yields of poliovirus in HeLaHVJ cells were lower, and the cytopathic changes were less than those in normal HeLa cells, while cell-associated virus growth in HeLaHVJ cells was nearly equal to that in HeLa cells. HeLaHVJ cells responded more effectively to the action of magnesium chloride, which facilitates virus release from infected cells, resulting in an cytopathic effects. No reduction in poliovirus yield could be detected in HeLa cells acutely infected with HVJ. The relationship between the inhibition of the release of poliovirus from HeLaHVJ cells and the persistent infection of the cells with HVJ is discussed.  相似文献   

8.
Kim SM  Park JH  Chung SK  Kim JY  Hwang HY  Chung KC  Jo I  Park SI  Nam JH 《Journal of virology》2004,78(24):13479-13488
Coxsackievirus B3 (CVB3), an enterovirus in the Picornavirus family, is the most common human pathogen associated with myocarditis and idiopathic dilated cardiomyopathy. We found upregulation of the cysteine-rich protein gene (cyr61) after CVB3 infection in HeLa cells with a cDNA microarray approach, which is confirmed by Northern blot analysis. It is also revealed that the extracellular amount of Cyr61 protein was increased after CVB3 infection in HeLa cells. cyr61 is an early-transcribed gene, and the Cyr61 protein is secreted into the extracellular matrix. Its function is related to cell adhesion, migration, and neuronal cell death. Here, we show that activation of the cyr61 promoter by CVB3 infection is dependent on JNK activation induced by CVB3 replication and viral protein expression in infected cells. To explore the role of Cyr61 protein in infected HeLa cells, we transiently overexpressed cyr61 and infected HeLa cells with CVB3. This increased CVB3 growth in the cells and promoted host cell death by viral infection, whereas down-expression of cyr61 with short interfering RNA reduced CVB3 growth and showed resistance to cell death by CVB3 infection. In conclusion, we have demonstrated a new role for cyr61 in HeLa cells infected with CVB3, which is associated with the cell death induced by virus infection. These data thus expand our understanding of the physiological functions of cyr61 in virus-induced cell death and provide new insights into the cellular factors involved.  相似文献   

9.
J Hotta  L Shi    H S Ginsberg 《Journal of virology》1994,68(11):7284-7291
The gene encoding the CD4 receptor was introduced into KB cells to establish the KBT4 cell line, a cell line susceptible to infection with human immunodeficiency virus type 1. Adenovirus replication was found to be significantly less in these cells than in the parental KB cells. Similar decreased adenovirus type 5 (Ad5) replication occurred in HeLaT4 cells compared with the original HeLa cells. The presence of CD4 did not alter the cell surface population of KB cell adenovirus receptors, since viral adsorption was similar in the two cell lines. Moreover, addition of soluble CD4 did not reduce viral replication in either KB or KBT4 infected cells. Uncoating of viral DNA was also unchanged in KBT4 cells compared with the parental KB cells. In contrast, migration to or entrance of viral DNA into nuclei and synthesis of early viral RNAs was delayed and reduced in KBT4 cells. These effects were more pronounced for Ad7 than for Ad5. The yields of infectious viruses were the same in both cell lines, however, after transfection of naked viral DNAs to initiate infection. These results imply that the expression of the CD4 gene in KBT4 cells interfered with passage of uncoated virus across endosomal vesicles and/or transfer of uncoated core viral DNA into the nucleus.  相似文献   

10.
HIV-1 is dual-tropic for CD4+ T lymphocytes and macrophages, but virus production in the macrophages becomes manifest only during late-stage infection, after CD4+ T cell functions are lost, and when opportunistic pathogens begin to flourish. In this study, the SHIV/macaque model of HIV pathogenesis was used to assess the role of cytokines in regulating virus replication in the two cell types. We injected complete Freund's adjuvant (CFA) intradermally into SHIV(KU)-infected macaques, and infused Schistosoma mansoni eggs into the liver and lungs of others. Tissues examined from these animals demonstrated that macrophages induced by CFA did not support viral replication while those induced by S. mansoni eggs had evidence of productive infection. RT-PCR analysis showed that both Th1 (IL-2 and IFN-gamma) and Th2 cytokines (IL-4 and IL-10) were present in the CFA lesions but only the Th2 cytokines were found in the S. mansoni lesions. Follow-up studies in macaque cell cultures showed that whereas IFN-gamma caused enhancement of virus replication in CD4+ T cells, it curtailed viral replication in infected macrophages. In contrast, IL-4 enhanced viral replication in infected macrophages. These studies strongly suggest that cytokines regulate the sequential phases of HIV replication in CD4 T cells and macrophages.  相似文献   

11.
The HIV-1 RNase H can be prematurely activated by oligodeoxynucleotides targeting the highly conserved polypurine tract required for second strand DNA synthesis. This inhibits retroviral replication in cell-free HIV particles and newly infected cells. Here we extend these studies to an in vivo model of retroviral replication. Mice that are chronically infected with the spleen focus-forming virus and treated with oligodeoxynucleotides that target the polypurine tract, exhibit either transient or long-term reductions in plasma virus titer, depending on the therapeutic regimen. Treatment prior to, during or shortly after infection can delay disease progression, increase survival rates and prevent viral infection. This strategy destroys viral RNA template in virus particles in serum as well as early retroviral replication intermediates in infected cells. As it targets events common to the replication cycle of all retroviruses, this approach may be broadly applicable to retroviruses of medical and agricultural importance.  相似文献   

12.

Background

Bunyamwera orthobunyavirus is both the prototype and study model of the Bunyaviridae family. The viral NSs protein seems to contribute to the different outcomes of infection in mammalian and mosquito cell lines. However, only limited information is available on the growth of Bunyamwera virus in cultured mosquito cells other than the Aedes albopictus C6/36 line.

Methodology and Principal Findings

To determine potential functions of the NSs protein in mosquito cells, replication of wild-type virus and a recombinant NSs deletion mutant was compared in Ae. albopictus C6/36, C7-10 and U4.4 cells, and in Ae. aegypti Ae cells by monitoring N protein production and virus yields at various times post infection. Both viruses established persistent infections, with the exception of NSs deletion mutant in U4.4 cells. The NSs protein was nonessential for growth in C6/36 and C7-10 cells, but was important for productive replication in U4.4 and Ae cells. Fluorescence microscopy studies using recombinant viruses expressing green fluorescent protein allowed observation of three stages of infection, early, acute and late, during which infected cells underwent morphological changes. In the absence of NSs, these changes were less pronounced. An RNAi response efficiently reduced virus replication in U4.4 cells transfected with virus specific dsRNA, but not in C6/36 or C7/10 cells. Lastly, Ae. aegypti mosquitoes were exposed to blood-meal containing either wild-type or NSs deletion virus, and at various times post-feeding, infection and disseminated infection rates were measured. Compared to wild-type virus, infection rates by the mutant virus were lower and more variable. If the NSs deletion virus was able to establish infection, it was detected in salivary glands at 6 days post-infection, 3 days later than wild-type virus.

Conclusions/Significance

Bunyamwera virus NSs is required for efficient replication in certain mosquito cell lines and in Ae. aegypti mosquitoes.  相似文献   

13.
The ability of the adenovirus type 5 E1B 55-kDa mutants dl1520 and dl338 to replicate efficiently and independently of the cell cycle, to synthesis viral DNA, and to lyse infected cells did not correlate with the status of p53 in seven cell lines examined. Rather, cell cycle-independent replication and virus-induced cell killing correlated with permissivity to viral replication. This correlation extended to S-phase HeLa cells, which were more susceptible to virus-induced cell killing by the E1B 55-kDa mutant virus than HeLa cells infected during G1. Wild-type p53 had only a modest effect on E1B mutant virus yields in H1299 cells expressing a temperature-sensitive p53 allele. The defect in E1B 55-kDa mutant virus replication resulting from reduced temperature was as much as 10-fold greater than the defect due to p53 function. At 39°C, the E1B 55-kDa mutant viruses produced wild-type yields of virus and replicated independently of the cell cycle. In addition, the E1B 55-kDa mutant viruses directed the synthesis of late viral proteins to levels equivalent to the wild-type virus level at 39°C. We have previously shown that the defect in mutant virus replication can also be overcome by infecting HeLa cells during S phase. Taken together, these results indicate that the capacity of the E1B 55-kDa mutant virus to replicate independently of the cell cycle does not correlate with the status of p53 but is determined by yet unidentified mechanisms. The cold-sensitive nature of the defect of the E1B 55-kDa mutant virus in both late gene expression and cell cycle-independent replication leads us to speculate that these functions of the E1B 55-kDa protein may be linked.  相似文献   

14.
Incorporation of (3)H-thymidine by BSC-1 cells infected with Shope fibroma virus was studied by means of high-resolution electron microscopic radioautography. One-hour pulses with the radioactive precursor were given at various times after infection, during a one-step growth cycle of the virus. In the cytoplasm of infected cells, reacted grains occurred over foci of viroplasm; these foci are believed to represent the true sites of viral deoxyribonucleic acid (DNA) replication. Shope fibroma virus DNA synthesis began before 3 hr postinfection, reached a maximum at 8 to 9 hr, and then declined rapidly. It was demonstrated that the decline in (3)H-thymidine uptake is correlated with the onset of viral morphogenesis. In comparison with the noninfected culture, the nuclear labeling, which reflects host DNA metabolism, was slightly reduced by 4 hr postinfection. Inhibition became more marked as infection progressed, and host DNA synthesis was almost completely suppressed in late stages of viral development.  相似文献   

15.
GDVII virus growth in BHK-21 cells, a permissive host for the virus, resembled productive infections with other picornaviruses. Virus yields ranged from 100 to 600 plaque-forming units (PFU)/cell. Virus replication in HeLa cells, a nonpermissive host for GDVII virus, was characterized by virus yields of only 0.1 to 5 PFU/cell. Similar low yields of virus have been obtained from HeLa cells at all multiplicities of input up to 6,000 per cell. The progeny particles from HeLa cells were, like the infecting particles, restricted in the HeLa cell host. Despite the great difference in final yields of virus from BHK-21 and HeLa cells, the times when maximal yields were reached were similar. GDVII virus stock grown in BHK-21 cells was designated HeLa(-). A variant of GDVII virus which is capable of extensive growth in HeLa cells was obtained. This variant, designated HeLa(+) GDVII virus, was passaged serially in HeLa cells. Virus yields of 50 to 150 infective virus particles per cell were obtained from infection of HeLa cells with HeLa(+) GDVII virus. The major species of HeLa(+) virus-specific ribonucleic acid (RNA) produced was single stranded and sedimented with an S value of 35S. The rate of accumulation of HeLa(+) virus-specific RNA in HeLa cell cultures was about four times that of HeLa(-) RNA. The amount of virus-specific HeLa(+) RNA formed in HeLa cells was several-fold greater than that of HeLa(-) RNA. With HeLa(-) parent GDVII virus undergoing productive replication in BHK-21 cells or abortive replication in HeLa cells, the major species of virus-specific RNA produced was single stranded and sedimented with an approximate S value of 35S. The amount of HeLa(-) virus-specific RNA extracted from BHK-21 cells was several-fold greater than the amount obtained from HeLa cells.  相似文献   

16.
5-Iododeoxyuridine (IUDR) inhibited production of infectious polyoma virus in mouse embryo cells and mouse kidney cells in culture. Deoxythymidine reversed its effect. IUDR did not inactivate infectivity of free virus particles. IUDR did not prevent adsorption and penetration of polyoma virus to cells. The events sensitive to IUDR treatment occurred at around 20 hours after infection. The cytopathic effects of polyoma virus, including emergence of DNA containing-inclusions in the nucleus, were observable in infected cells in which viral replication was completely arrested by IUDR. It was shown by fluorescent antibody technique in infected mouse embryo cells and by complement fixation test in infected mouse kidney cells that IUDR inhibited completely the synthesis of viral antigen. No virus-like particles were demonstrated in the IUDR-treated infected-mouse kidney cells by electron microscope examinations.  相似文献   

17.
Rustigian, Robert (Tufts University School of Medicine, Boston, Mass.). Persistent infection of cells in culture by measles virus. I. Development and characteristics of HeLa sublines persistently infected with complete virus. J. Bacteriol. 92:1792-1804. 1966.-After the development of marked cytopathic effects in HeLa cultures infected with the Edmonston strain of measles virus, renewed cell growth occurred, and HeLa sublines persistently infected with measles virus were obtained. Persistent infection has occurred in a large fraction of the cells of infected clonal lines for more than 300 to 500 cell generations during a period of 6 years. One mechanism by means of which infection was maintained in the clonal lines is transmission of virus or viral subunits from cell to cell at division. Continued subculture of the persistently infected populations resulted in the virtual disappearance of cytopathic effects, a marked decrease in the amount of extracellular virus, and alterations in the cytopathogenicity of virus recovered from persistently infected populations. The intracellular virus-host cell events in late passages of the infected clonal lines appeared to be similar to those in cells of primary infected cultures at early stages of infection, as judged by the pattern of viral immunofluorescence and the very low incidence of cells with intranuclear inclusion bodies. Cultures of the persistently infected clonal lines were highly resistant to super infection by parent Edmonston virus. Cultures of one of these clonal lines were just as susceptible as normal HeLa cultures to vaccinia, herpes simplex, and polio type 2 viruses, and a simian agent, with a possible low degree of resistance to the simian agent.  相似文献   

18.
19.
Evidence for poliovirus-induced cytoplasmic alkalinization in HeLa cells   总被引:2,自引:0,他引:2  
During the early period after poliovirus infection of HeLa cells, cellular Na+/K+ ATPase activity is transiently activated. We investigated the possibility that Na+/K+ ATPase activation is a consequence of Na+/H+ antiporter activation. Increased uptake of the weak organic acid 5,5-dimethyloxazolidine-2,4-dione by infected cells around 2 h after infection suggested cytoplasmic alkalinization equivalent to pH 7.7 during the biosynthetic phase of viral replication. Consistent with the involvement of Na+/H+ antiporter activation in this phenomenon, it was found to be [Na+]-dependent and inhibited by 5-(N-ethyl-N-isopropyl)amiloride (EIPA). However, the pH increase was not associated with an increase in amiloride-sensitive Na+ uptake by infected cells predicted by this mechanism. By contrast, the alkalinization could be abolished with the anion-exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), implicating an anion-exchange mechanism, such as Cl-/HCO3- exchange, in this process. In addition to abolishing virus-induced intracellular alkalinization, both EIPA and DIDS moderately inhibited viral replication. Manipulation of intracellular pH with nigericin in the incubation medium revealed that maximum viral replication required a pH of about 7.7 and that replication was significantly inhibited even at pH 7.3. Thus, the pH increase in infected cells appeared to be physiologically relevant. These findings represent the first demonstration of a biologically meaningful pH increase in cells infected with a lytic virus.  相似文献   

20.
J Schaack  X Guo  W Y Ho  M Karlok  C Chen    D Ornelles 《Journal of virology》1995,69(7):4079-4085
HeLa and 293 cell lines that express biologically active adenovirus type 5 precursor terminal protein (pTP) have been made. The amount of pTP synthesized in these cell lines ranges from barely detectable to greater than that observed in cells infected with the wild-type virus. The pTP-expressing cell lines permit the growth of a temperature-sensitive terminal protein mutant virus sub100r at the nonpermissive temperature. A higher percentage of the stably transfected 293 cell lines expressed terminal protein, and generally at considerably higher levels, than did the HeLa cell lines. While 293 cells appeared to tolerate pTP better than did HeLa cells, high-level pTP expression in 293 cells led to a significantly reduced growth rate. The 293-pTP cell lines produce infectious virus after transfection with purified viral DNA and form plaques when overlaid with Noble agar after infection at low multiplicity. These cell lines offer promise for the production of adenoviruses lacking pTP expression and therefore completely defective for replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号