首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
In the Pichia pastoris expression system, increasing the copy number of the expression cassette often has the effect of increasing the amount of protein expressed. To improve the expression level of methyl parathion hydrolase (MPH), we constructed two integration vectors with four and eight direct repeats of the expression cassette using an in vitro multimerization approach. After two successive integrations, at least 12 copies of the MPH expression cassette were integrated into the P. pastoris chromosome. Under shake-flask conditions, over 55 mg active MPH/l was secreted into the medium by the multicopy clones. The extracellular enzyme activity was about 10-fold higher for the multicopy clones than for clones containing a single copy of the gene. Further investigations revealed that the multicopy MPH expression cassette could remain stably integrated and functional over five generations. Note that the expression vector pRF constructed in our study can be not only used to construct multiple copies of the expression cassette in vitro, but also integrated into the P. pastoris genome without introducing any antibiotic resistance gene, which is desirable for production of biotherapeutic proteins.  相似文献   

2.
Strains of the fission yeast Schizosaccharomyces pombe have been constructed containing single or multiple chromosomally integrated copies of an expression cassette for production of human gastric lipase. Integrant strains of S. pombe secrete active lipase and are stable for lipase production over a minimum of 50 generations in non-selective media. Lipase activity levels for integrant strains containing up to three tandem copies of the expression cassette are strongly correlated with copy number of the cassette in both complete and minimal media. Lipase activity is higher in complete medium than in minimal medium. Strains carrying three chromosomally integrated expression cassette copies can be grown without selection in complete medium and are capable of significantly higher lipase activities than strains containing the expression cassette on a multicopy plasmid. Received: 27 March 1997 / Received revision: 13 August 1997 / Accepted: 25 August 1997  相似文献   

3.
Several cutinase variants derived by molecular modelling and site-directed mutagenesis of a cutinase gene from Fusarium solani pisi are poorly secreted by Saccharomyces cerevisiae. The majority of these variants are successfully produced by the filamentous fungus Aspergillus awamori. However, the L51S and T179Y mutations caused reductions in the levels of extracellular production of two cutinase variants by A. awamori. Metabolic labelling studies were performed to analyze the bottleneck in enzyme production by the fungus in detail. These studies showed that because of the single L51S substitution, rapid extracellular degradation of cutinase occurred. The T179Y substitution did not result in enhanced sensitivity towards extracellular proteases. Presumably, the delay in the extracellular accumulation of this cutinase variant is caused by the enhanced hydrophobicity of the molecule. Overexpression of the A. awamori gene encoding the chaperone BiP in the cutinase-producing A. awamori strains had no significant effect on the secretion efficiency of the cutinases. A cutinase variant with the amino acid changes G28A, A85F, V184I, A185L, and L189F that was known to aggregate in the endoplasmic reticulum of S. cerevisiae, resulting in low extracellular protein levels, was successfully produced by A. awamori. An initial bottleneck in secretion occurred before or during translocation into the endoplasmic reticulum but was rapidly overcome by the fungus.  相似文献   

4.
Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea   总被引:5,自引:0,他引:5  
Summary A gene from Magnaporthe grisea was cloned using a cDNA clone of the Colletotrichum gloeosporioides cutinase gene as a heterologous probe; the nucleotide sequence of a 2 kb DNA segment containing the gene has been determined. DNA hybridization analysis shows that the M. grisea genome contains only one copy of this gene. The predicted polypeptide contains 228 amino acids and is homologous to the three previously characterized cutinases, showing 74% amino acid similarity to the cutinase of C. gloeosporioides. Comparison with previously determined cutinase sequences suggests that the gene contains two introns, 115 and 147 bp in length. The gene is expressed when cutin is the sole carbon source but not when the carbon source is cutin and glucose together or glucose alone. Levels of intracellular and extracellular cutinase activity increase in response to growth in the presence of cutin. The activity level is higher in a transformant containing multiple copies of the cloned gene than in the parent strain. Non-denaturing polyacrylamide gels stained for esterase activity show a single major band among intracellular and extracellular proteins from cutin-grown cultures that is not present among intracellular and extracellular proteins prepared from glucose-grown or carbon-starved cultures. This band stains more intensely in extracts from the multicopy transformant than in extracts from the parent strain. We conclude that the cloned DNA contains a M. grisea gene for cutinase, which we have named CUT1.  相似文献   

5.
The synonymous codons are used in a highly nonrandom manner in hosts of widely divergent species, which is termed ‘codon usage bias’. Several reports suggest that codon usage bias sometimes obstructs attempts to express high levels of exogenous genes. In this study, an attempt was made to express mature peptide of human bone morphogenetic protein-7 with optimized codons in P. pastoris expression system. Three low-usage ARG codons (CGG or CGA) in hBmp7 mature domain have been successfully transformed into P. pastoris-preferred ARG codons (AGA) with overlap extension PCR-based multiple-site-directed mutagenesis for a high level expression of hBMP7 mature peptide. The results of this study showed that the production level (25.45 mg/L) of a codon-optimized strain increased 4.6-fold in comparison with that (5.5 mg/L) of noncodon-optimized strain. A strain harboring multicopy of codon-optimized hbmp7 expression cassette showed an even higher expression level, which was about 2-fold compared with that of the single-copy one. These recombinant hBMP7 mature peptides were produced as 18-kD monomer proteins and were easily purified from culture supernatants using ion-exchange chromatography. Functional assay demonstrated that rhBMP7 could induce ectopic cartilage formation, although its inductive ability was much less active than that of CHO cell-derived hBMP7.  相似文献   

6.
The chromosomal cellobiohydrolase 1 locus (cbh1) of the biotechnologically important filamentous fungus Trichoderma reesei was replaced in a single-step procedure by an expression cassette containing an endoglucanase I cDNA (egl1) under control of the cbh1 promoter. CBHI protein was missing from 37–63% of the transformants, showing that targeting of the linear expression cassette to the cbh1 locus was efficient. Studies of expression of the intact cbh1-egl1 cassette at the cbh1 locus revealed that egl1 cDNA is expressed from the cbh1 promoter as efficiently as cbh1 itself. Furthermore, a strain carrying two copies of the cbh1-egl1 expression cassette produced twice as much EG I as the amount of CBHI, the major cellulase protein, produced by the host strain. The level of egl1-specific mRNA in the single-copy transformant was about 10-fold higher than that found in the non transformed host strain, indicating that the cbh1 promoter is about 10 times stronger than the egl1 promoter. The 10-fold increase in the secreted EG I protein, measured with an enzyme-linked immunosorbent assay (ELISA), correlated well with the increase in egl1-specific mRNA.  相似文献   

7.
High-level extracellular production of Fusarium solani cutinase was achieved using a Pichia pastoris expression system. The cutinase-encoding gene was cloned into pPICZαA with the Saccharomyces cerevisiae α-factor signal sequence and methanol-inducible alcohol oxidase promoter by two different ways. The additional sequences of the c-myc epitope and (His)6-tag of the vector were fused to the C-terminus of cutinase, while the other expression vector was constructed without any additional sequence. P. pastoris expressing the non-tagged cutinase exhibited about two- and threefold higher values of protein amount and cutinase activity in the culture supernatant, respectively. After simple purification by diafiltration process, both cutinases were much the same in the specific activity and the biochemical properties such as the substrate specificity and the effects of temperature and pH. In conclusion, the high-level secretion of F. solani cutinase in P. pastoris was demonstrated for the first time and would be a promising alternative to many expression systems previously used for the large-scale production of F. solani cutinase in Saccharomyces cerevisiae as well as Escherichia coli.  相似文献   

8.
Liu ZG  Zhu L  Zhu KL  Chen S  Chen J  Wu J 《Current microbiology》2011,62(4):1302-1307
Translational Initial Region (TIR) is the threshold of an intracellular translation process, and tiny alterations in this region are reported to intensely influence the downstream expression. Such property provides a potential utilization in extracellular production of recombinant enzyme. As an esterase, cutinase is an essential catalyst in the process of textile scouring, and has a potential application in food and chemical industry. In the present study, a bacterial cutinase (Tfu_0883) from Thermobifida fusca was expressed in Escherichia coli with pelB as its signal peptide using trc as its promoter. A subsequent TIR degeneracy mutagenesis was then carried out in the initial sequence of pelB. A fast screening method for these mutants was developed and a series of strains with different expression strengths were accordingly obtained. Among these mutants, a high cutinase production level of 38.0 U/ml was achieved, which is three times that of the control group. This study explored the potential utilization of TIR degeneracy mutagenesis in the production of industrial enzymes.  相似文献   

9.
Trichoderma reesei endoglucanase I (EGI) was used as a reporter enzyme for screening mutagenized yeast strains for increased ability to produce protein. Sixteen haploid Saccharomyces cerevisiae strains, transformed with a yeast multicopy vector pALK222, containing the EGI cDNA under the ADH1 promoter, produced EGI activity of 10-5–10-4 g/l. On the average 93% of the total activity was secreted into the culture medium. Two strains with opposite mating types were mutagenized, and several mutants were isolated possessing up to 45-fold higher EGI activity. The best mutants were remutagenized and a second-generation mutant, strain 2804, with an additional twofold increase in EGI activity was selected. The mutant strain 2804 grew more slowly and reached a lower final cell density than the parental strain. In the selective minimal medium, the 2804 strain produced 40 mg/l immunoreactive EGI protein, but only 2% was active enzyme. In the rich medium the secreted EGI enzyme stayed active, but without selection pressure the EGI production ceased after 2 days of cultivation, when the strain 2804 had produced 10 mg/l of EGI. A sevenfold difference was found between the parental and the 2804 strain in their total EGI production relative to cell density. The difference in favour of the mutant strain was also detected on the mRNA level. The 2804 mutant was found to be more active than the parental strain also in the production of T. reesei cellulases, cellobiohydrolase I, and cellobiohydrolase II. Received: 22 December 1995/Received revision: 26 February 1996/Accepted: 17 March 1996  相似文献   

10.
The function of the endoplasmic-reticulum-localized chaperone binding protein (BiP) in relation to protein secretion in filamentous fungi was studied. It was shown that the overproduction of several homologous and heterologous recombinant proteins by Aspergillus strains induces the expression of bipA, the BiP-encoding gene from Aspergillus niger and Aspergillus awamori. As this result could imply that BiP plays a role in protein overproduction, the effect of modulation of bipA gene expression on protein secretion was studied in several recombinant strains expressing glucoamylase (glaA) fusion genes. For overproduction of BiPA in these strains, extra copies of the bipA gene under the control of an inducible promoter were introduced. To allow analysis of the effect of a decreased bipA expression level on protein secretion, replacement of the wild-type gene for a bipA gene driven by the glaA promoter was attempted. However, this endeavour failed because of the lethality of this replacement. Although the final amount of secreted recombinant protein did not change significantly in strains with increased BiPA levels, increased levels of unprocessed fusion protein were detected in the total protein extracts of these strains. Received: 9 February 1998 / Received last revision: 26 May 1998 / Accepted: 14 June 1998  相似文献   

11.
Polycaprolactone (PCL), a synthetic polyester with applications in biodegradable plastics, is degraded by a variety of microorganisms, including fungal phytopathogens. These pathogens secrete cutinase, which hydrolyzes cutin, the polyester structural component of plant cuticle, releasing ω-hydroxy fatty acids that induce cutinase synthesis. Our laboratory previously reported that growth of Fusarium solani on PCL requires cutinase, which is active as a PCL depolymerase and induced by the products of its action on PCL. A mutant strain of F. solani in which the cutinase gene is deleted was unable to grow on PCL and did not secrete PCL depolymerase activity in the media tested. It is now shown that this mutant produces a PCL depolymerase in media containing lipase inducers. Wild-type strains also produce this second PCL depolymerase, which is induced by Tween 80 and tributyrin, but not by PCL or cutin. The second depolymerase shows interfacial activation, indicating that it is a lipase. PCL may thus be a substrate but not an inducer of depolymerases that degrade it, and screening microorganisms on medium with PCL as the sole source of carbon and energy may fail to reveal strains with active PCL depolymerases, because of the absence of an inducer. Surprisingly, Tween 80 induces both cutinase and lipase activities in wild-type F. solani. Received: 31 March 1998 / Received revision: 27 July 1998 / Accepted: 8 August 1998  相似文献   

12.
We report the expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori. Fragments encoding VHHs were cloned in a suitable Aspergillus expression vector and transformants secreting VHH fragments were analysed for integrated gene copy-numbers, mRNA levels and protein production. Functional VHHs were detected in the culture medium, indicating the feasibility of producing this type of protein in a fungal expression system. Secreted VHHs were subjected to (extracellular) degradation, which could be partially prevented by the addition of BSA to the culture medium.An erratum to this article can be found at  相似文献   

13.
 Temperature-regulated expression of recombinant proteins in the tac promoter (Ptac) system was investigated. Expression levels of fungal xylanase and cellulase from N. patriciarum in E. coli strains containing the natural lacI gene under the control of the Ptac markedly increased with increasing cultivation temperature in the absence of a chemical inducer. The specific activities (units per milligram protein of crude enzyme) of the fungal xylanase and cellulase produced from recombinant E. coli strain pop2136 grown at 42°C were about 4.5 times higher than those of the cells grown at 23°C and were even slightly higher when compared with cells grown in the presence of the inducer isopropyl β-D-thiogalactopyranoside. The xylanase expression level in the temperature-regulated Ptac system was about 35% of total cellular protein. However, this system can not be applied to E. coli strains containing lacI q, which confers over production of the lac repressor, for high-level expression of recombinant proteins. In comparison with the λPL system, the Ptac-based xylanase plasmid in E. coli pop2136 gave a considerably higher specific activity of the xylanase than did the best λPL-based construct using the same thermal induction procedure. The high-level expression of the xylanase using the temperature-regulated Ptac system was also obtained in 10-litre fermentation studies using a fed-batch process. These results unambiguously demonstrated that the temperature-modulated Ptac system can be used for overproduction of some non-toxic recombinant proteins. Received: 27 June 1995/Received revision: 13 September 1995/Accepted: 30 September 1995  相似文献   

14.
Cutinase production byStreptomyces spp.   总被引:1,自引:0,他引:1  
Forty-fiveStreptomyces strains, including representatives of the plant pathogensS. acidiscabies, S. scabies, andS. ipomoea, were screened for ability to produce enzymes (cutinases) capable of hydrolyzing the insoluble plant biopolyester cutin. Initially, all strains were tested for production of extracellular esterase in liquid shake (250 rpm) cultures at room temperature in defined (glycerol-asparagine) or complex (tryptone-yeast extract with or without addition of mannitol) broth media supplemented with either tomato or apple cutin. Esterase activity was determined by a spectrophotometric assay utilizing the model substratep-nitrophenyl butyrate. Of the five strains exhibiting highest esterase activity, four (S. acidiscabies ATCC 49003,S. scabies ATCC 15485 and IMRU 3018, andS. badius ATCC 19888) were confirmed to produce enzymes with cutin-degrading activity (cutinases). Confirmation of extracellular cutinase production was accomplished by use of a new high-performance liquid chromatography method for separation and quantification of released cutin monomers. Monomer identification was confirmed by GC/MS analyses. Cutinase production was induced 2- to 17-fold by inclusion of cutin in the media. To our knowledge this constitutes the first report of cutinase production byStreptomyces spp. other thanS. scabies.Reference to any brand or firm name does not constitute endorsement by the U.S. Department of Agriculture over others of a similar nature not mentioned.  相似文献   

15.
We inserted the Tn10 tetracycline resistance determinant (tet) into the multicopy plasmid pACYC177, and we examined the phenotype of Escherichia coli K-12 strains harboring these plasmids. In agreement with others, we find that Tn10 tet exhibits a negative gene dosage effect. Strains carrying multicopy Tn10 tet plasmids are 4- to 12-fold less resistant to tetracycline than are strains with a single copy of Tn10 in the bacterial chromosome. In addition, we find that multicopy tet strains are 30- to 100-fold less resistant to the tetracycline derivative 5a,6-anhydrotetracycline than are single-copy tet strains. Multicopy tet strains are, in fact, 10- to 25-fold more sensitive to anhydrotetracycline than are strains that lack tet altogether. The hypersensitivity of multi-copy strains to anhydrotetracycline is correlated with the effectiveness of anhydrotetracycline as an inducer of tet gene expression, rather than its effectiveness as an inhibitor of protein synthesis. Anhydrotetracycline is 50- to 100-fold more effective than tetracycline as an inducer of tetracycline resistance and as an inducer of beta-galactosidase in strains that harbor tet-lac gene fusions. In contrast, anhydrotetracycline appears to be two- to fourfold less effective than tetracycline as an inhibitor of protein synthesis. Both anhydrotetracycline and tetracycline induce synthesis of tet polypeptides in minicells harboring multicopy tet plasmids. Differences between E. coli K-12 backgrounds influence the tetracycline and anhydrotetracycline sensitivity of multicopy strains; ZnCl2 enhances the tetracycline and anhydrotetracycline sensitivity of these strains two- to threefold. We propose that the overexpression of one or more Tn10 tet gene products inhibits the growth of multicopy tet strains and accounts for their relative sensitivity to inducers of tet gene expression.  相似文献   

16.
The chromosomal cellobiohydrolase 1 locus (cbh1) of the biotechnologically important filamentous fungus Trichoderma reesei was replaced in a single-step procedure by an expression cassette containing an endoglucanase I cDNA (egl1) under control of the cbh1 promoter. CBHI protein was missing from 37–63% of the transformants, showing that targeting of the linear expression cassette to the cbh1 locus was efficient. Studies of expression of the intact cbh1-egl1 cassette at the cbh1 locus revealed that egl1 cDNA is expressed from the cbh1 promoter as efficiently as cbh1 itself. Furthermore, a strain carrying two copies of the cbh1-egl1 expression cassette produced twice as much EG I as the amount of CBHI, the major cellulase protein, produced by the host strain. The level of egl1-specific mRNA in the single-copy transformant was about 10-fold higher than that found in the non transformed host strain, indicating that the cbh1 promoter is about 10 times stronger than the egl1 promoter. The 10-fold increase in the secreted EG I protein, measured with an enzyme-linked immunosorbent assay (ELISA), correlated well with the increase in egl1-specific mRNA.  相似文献   

17.
 The methylotrophic yeast Hansenula polymorpha has been developed as an efficient production system for heterologous proteins. The system offers the possibility to cointegrate heterologous genes in anticipated fixed copy numbers into the chromosome. As a consequence coproduction of different proteins in stoichiometric ratios can be envisaged. This provides options to design this yeast as an industrial biocatalyst in procedures where several enzymes are required for the efficient conversion of a given inexpensive compound into a valuable product. To this end recombinant strains have been engineered with multiple copies of expression cassettes containing the glycolate oxidase (GO) gene from spinach and the catalase T (CTT1) gene from S. cerevisiae. The newly created strains produce high levels of the peroxisomal glycolate oxidase and the cytosolic catalase T. The strains efficiently convert glycolate into glyoxylic acid, oxidizing the added substrate and decomposing the peroxide formed during this reaction into water and oxygen. Received: 31 October 1995/Received last revision: 23 February 1996/Accepted: 4 March 1996  相似文献   

18.
Pea (Pisum sativum L.) sequences that are analogous to the conserved nucleotide binding site (NBS) domain found in a number of plant disease resistance genes (R-genes) were cloned. Using redundant oligonucleotide primers and the polymerase chain reaction (PCR), we amplified nine pea sequences and characterised their sequences. The pea R-gene analog (RGA)- deduced amino acid sequences demonstrated significant sequence similarity with known R-gene sequences lodged in public databases. The genomic locations of eight of the pea RGAs were determined by linkage mapping. The eight RGAs identified ten loci that mapped to six linkage groups. In addition, the genomic organization of the RGAs was inferred. Both single-copy and multicopy sequence families were present among the RGAs, and the multicopy families occurred most often as tightly linked clusters of related sequences. Intraspecific copy number variability was observed in three of the RGA sequence families, suggesting that these sequence families are evolving rapidly. The genomic locations of the pea RGAs were compared with the locations of known pea R-genes and sym genes involved in the pea-rhizobia symbiosis. Two pea RGAs mapped in the genomic region containing a pea R-gene, Fw, and four pea RGAs mapped in regions of the genome containing sym genes. Received: 4 August 1999 / Accepted: 11 November 1999  相似文献   

19.
We have constructed a binary vector containing elements of the monopartite geminivirus, tobacco yellow dwarf virus (TYDV). The vector is designed to be stably integrated into the plant genome, via Agrobacterium-mediated transfer. Upon expression of the viral replication-associated protein the TYDV elements are released from the T-DNA and then replicate episomally. We refer to these released forms as multicopy plant episomes (MPE). Tobacco plants (Nicotiana tabacum cv `Samsun') transformed with the vector showed MPE release and subsequent episomal replication in 6 of 11 of these plants. An MPE vector containing the uidA gene faithfully replicated and maintained the reporter gene, even though the construct was considerably larger than the wild-type TYDV genome. Histochemical staining revealed a speckled GUS expression phenotype which could be correlated with MPE replication. Received: 11 July 1997 / Revision received: 4 November 1997 / Accepted: 8 December 1997  相似文献   

20.
To study the effects of selection marker, promoter type, and copy number on heterologous expression in Aspergillus nidulans, strains were constructed with single- and multicopy plasmid integrations bearing a reporter gene (lacZ) under the control of either an inducible (alcA) or constitutive (gpdA) promoter and one of three Aspergillus nutritional marker genes (argB, trpC, or niaD). β-Galactosidase activity in the transformants varied over three orders of magnitude, with the majority of levels in the range of 5×103–1×104 U/mg. Significant differences in mean expression levels were found when comparing single-copy transformants with the same promoter but a different marker. Transformants with the argB marker had the highest average expression, ∼threefold over the trpC or niaD clones. For each promoter, maximal expression for the set was seen in the range of the single-copy clones, implying that increasing the copy number does not reliably increase expression in Aspergillus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号