首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impaired secretion of the hydrophobic CY028 cutinase invokes an unfolded protein response (UPR) in Saccharomyces cerevisiae cells. Here we show that the UPR in CY028-expressing S. cerevisiae cells is manifested as an aberrant morphology of the endoplasmic reticulum (ER) and as extensive membrane proliferation compared to the ER morphology and membrane proliferation of wild-type CY000-producing S. cerevisiae cells. In addition, we observed oxidative stress, which resulted in a 21-fold increase in carbonylated proteins in the CY028-producing S. cerevisiae cells. Moreover, CY028-producing S. cerevisiae cells use proteasomal degradation to reduce the amount of accumulated CY028 cutinase, thereby attenuating the stress invoked by CY028 cutinase expression. This proteasomal degradation occurs within minutes and is characteristic of ER-associated degradation (ERAD). Our results clearly show that impaired secretion of the heterologous, hydrophobic CY028 cutinase in S. cerevisiae cells leads to protein aggregation in the ER, aberrant ER morphology and proliferation, and oxidative stress, as well as a UPR and ERAD.  相似文献   

2.
The reactivity, stability and unfolding of wild-type (WT) Fusarium solani pisi cutinase and L153Q, S54D and T179C variants were studied in the absence and presence of the dioctyl sulfosuccinate sodium salt (AOT) surfactant. In the absence of surfactant the S54D variant catalytic activity is similar to that of the WT cutinase, whereas L153Q and T179C variants show a lower activity. AOT addition induces an activity reduction for WT cutinase and its variants, although for low AOT concentrations a small increase of activity was observed for S54D and T179C. The enzyme deactivation in the presence of 0.5 mM AOT is relatively slow for the S54D and T179C variants when compared to wild-type cutinase and L153Q variant. These results were correlated with secondary and tertiary structure changes assessed by the CD spectrum and fluorescence of the single tryptophan and the six tyrosine residues. The WT cutinase and S54D variant have similar secondary and tertiary structures that differ from those of T179C and L153Q variants. L153Q, S54D and T179C mutations prevent the formation of hydrophobic crevices responsible for the unfolding by anionic surfactants, with the consequent decrease of the AOT-cutinase interactions.  相似文献   

3.
The lipid molecule ceramide is transported from the endoplasmic reticulum to the Golgi apparatus for sphingomyelin production via the ceramide transport protein (CERT), encoded by CERT1. Hyperphosphorylation of CERT’s serine-repeat motif (SRM) decreases its functionality. Some forms of inherited intellectual disability (ID) have been associated with a serine-to-leucine substitution in the SRM (S132L mutation) and a glycine-to-arginine substitution outside the SRM (G243R mutation) in CERT; however, it is unclear if mutations outside the SRM disrupt the control of CERT functionality. In the current investigation, we identified a new CERT1 variant (dupAA) in a patient with mild ID that resulted from a frameshift at the C-terminus of CERT1. However, familial analysis revealed that the dupAA variant was not associated with ID, allowing us to utilize it as a disease-matched negative control for CERT1 variants that are associated with ID. Biochemical analysis showed that G243R and S132L, but not dupAA, impair SRM hyperphosphorylation and render the CERT variants excessively active. Additionally, both S132L and G243R mutations but not dupAA caused the proteins to be distributed in a punctate subcellular manner. On the basis of these findings, we infer that the majority of ID-associated CERT variants may impair SRM phosphorylation-dependent repression, resulting in an increase in sphingomyelin production concurrent with CERT subcellular redistribution.  相似文献   

4.
A phosphate solubilizing fungus, Aspergillus awamori S29 was isolated from rhizoshpere of mungbean. The phosphate solubilizing activity of A. awamori S29 in liquid was 1,110?mg/L for tricalcium phosphate (TCP). The organism was able to solubilize various inorganic forms of phosphate at a wide range of temperatures. Among various insoluble phosphate sources tested, di-calcium phosphate was solubilized the most, followed by TCP. A. awamori S29 had significant effect (p?<?0.05) on mungbean growth, total P and plant biomass under pot conditions, although no obvious difference in available P in soil and number of leaves was found compared to the control.  相似文献   

5.
Genetic variations in the autophagic pathway influence genetic predispositions to Crohn disease. Autophagy, the major lysosomal pathway for degrading and recycling cytoplasmic material, constitutes an important homeostatic cellular process. Of interest, single-nucleotide polymorphisms in ATG16L1 (autophagy-related 16-like 1 [S. cerevisiae]), a key component in the autophagic response to invading pathogens, have been associated with an increased risk of developing Crohn disease. The most common and well-studied genetic variant of ATG16L1 (rs2241880; leading to a T300A conversion) exhibits a strong association with risk for developing Crohn disease. The rs2241880 variant plays a crucial role in pathogen clearance, resulting in imbalanced cytokine production, and is linked to other biological processes, such as the endoplasmic reticulum stress/unfolded protein response. In this review, we focus on the importance of ATG16L1 and its genetic variant (T300A) within the elementary biological processes linked to Crohn disease.  相似文献   

6.
 A synthetic derivative of the cutinase cDNA of Fusarium solani pisi was expressed in Aspergillus awamori using the A. awamori endoxylanase II (exlA) promoter and terminator. The influence of the origin of the pre-sequence and the presence of a pro-sequence on the efficiency of extracellular cutinase production was analysed in single-copy transformants containing an expression cassette integrated at the pyrG locus. Transformants containing a construct encoding a direct, in-frame fusion of the xylanase pre-peptide to the mature cutinase showed a 2-fold higher cutinase production level compared to strains containing constructs with an additional cutinase pro-peptide. The effect of multicopy integration of the expression cassette on cutinase production was analysed in strains with different numbers of a cutinase construct containing its own pre-prosequence. The multicopy strains showed a 6- to 12-fold increased production of extracellular cutinase relative to the single-copy strains. No linear dose response relation to the number of expression cassettes present in the strains was observed. The amount of active enzyme produced by the strains correlated with the amount of cutinase-specific mRNA, suggesting that cutinase overproduction is not limited at the level of translation or secretion. Received: 3 August 1995/Received revision: 20 December 1995/Accepted: 8 January 1996  相似文献   

7.
This study focuses on the different efficiencies of secretion of two fungal cutinases by Saccharomyces cerevisiae, a wild-type cutinase (CY000) and a hydrophobic mutant cutinase (CY028). Both cutinases are placed under control of the GAL7 promoter, by which the expression levels can be regulated. Wild-type cutinase was secreted at up to 25 mg per g (dry weight), while CY028 was secreted at a level of 2 mg per g (dry weight); this difference is nearly independent of the expression level. Pulse-chase experiments revealed that whereas CY000 cutinase is secreted, CY028 is irreversibly retained in the cell. Immunogold labelling followed by electron microscopy revealed colocalization of CY028 with immunoglobulin heavy-chain binding protein (BiP) in the endoplasmic reticulum (ER). The increase of wild-type cutinase expression did not result in higher levels of the molecular chaperone BiP, but BiP levels are raised by increased induction of the hydrophobic mutant cutinase. Immunoprecipitation studies showed that in contrast to the wild-type cutinase, the hydrophobic mutant cutinase interacts with BiP. These results indicate that the introduction of two exposed hydrophobic patches in cutinase results in a higher affinity for BiP which might cause the retention of this mutant cutinase in the ER.  相似文献   

8.
Carboxypeptidase Y (CPY) is a yeast vacuolar protease with useful applications including C-terminal sequencing of peptides and terminal modification of target proteins. To overexpress CPY with the pro-sequence (proCPY) encoded by the Saccharomyces cerevisiae PRC1 gene in recombinant S. cerevisiae, the proCPY gene was combined with the gene coding for a signal sequence of S. cerevisiae mating factor α (MFα), invertase (SUC2), or Kluyveromyces marxianus inulinase (INU1). Among the three constructs, the MFα signal sequence gave the best specific activity of extracellular CPY. To enhance the CPY expression level, folding accessory proteins of Kar2p, Pdi1p and Ero1p located in the S. cerevisiae endoplasmic reticulum were expressed individually and combinatorially. A single expression of Kar2p led to a 28 % enhancement in extracellular CPY activity, relative to the control strain of S. cerevisiae CEN.PK2-1D/p426Gal1-MFαCPY. Coexpression of Kar2p, Pdi1p and Ero1p gave a synergistic effect on CPY expression, of which activity was 1.7 times higher than that of the control strain. This work showed that engineering of signal sequences and protein-folding proteins would be helpful to overexpress yeast proteins of interest.  相似文献   

9.
Conformational flexibility of α-helices in glucoamylase of the fungus Aspergillus awamori was studied by molecular dynamics methods. Several amino acid substitutions (G127A, P128A, I136L, G137A, and G139A) optimizing intrinsic interactions in one of the α-helices (D) within the hydrophobic core of this protein were constructed and studied. It was found that these point mutations had different effects on the glucoamylase thermal inactivation constant. Unlike amino acid substitution P128A and substitutions G137A and A246C, I136L and G139A displayed a pronounced additive thermostabilizing effect.  相似文献   

10.
Cutinase as a promising biocatalyst has been intensively studied and applied in processes targeted for industrial scale. In this work, the cutinase gene tfu from Thermobifida fusca was artificially synthesized according to codon usage bias of Saccharomyces cerevisiae and investigated in Saccharomyces cerevisiae. Using the α-factor signal peptide, the T. fusca cutinase was successfully overexpressed and secreted with the GAL1 expression system. To increase the cutinase level and overcome some of the drawbacks of induction, four different strong promoters (ADH1, HXT1, TEF1, and TDH3) were comparatively evaluated for cutinase production. By comparison, promoter TEF1 exhibited an outstanding property and significantly increased the expression level. By fed-batch fermentation with a constant feeding approach, the activity of cutinase was increased to 29.7 U/ml. The result will contribute to apply constitutive promoter TEF1 as a tool for targeted cutinase production in S. cerevisiae cell factory.  相似文献   

11.
The S. cerevisiae ribosomal protein L30e is an autoregulatory protein that binds to its own pre-mRNA and mature mRNA to inhibit splicing and translation, respectively. The L30e RNA-binding element is a stem-asymmetric loop–stem that forms a kink-turn. A bacterial genetic system was designed to test the ability of protein variants to repress the expression of reporter mRNAs containing the L30e RNA-binding element. Initial screens revealed that changes in several RNA nucleotides had a measurable effect on repression of the reporter by the wild type protein. RNA mutants that reduce repression were screened against libraries of randomly mutagenized L30e proteins. These screens identified a glycine to serine mutation of L30e, which specifically restores activity to an RNA variant containing a U that replaces a helix-capping G. Similarly, an asparagine to alanine mutation was found to suppress a substitution at a position where the L30e RNA nucleotide extends out into the protein pocket. In addition, a compensatory RNA mutation within a defective RNA variant was found. The identification of these suppressors provides new insights into the architecture of a functional binding element and its recognition by an important RNA-binding protein.  相似文献   

12.
Heterozygous mutations in the melanocortin-4 receptor (MC4R) gene represent the most frequent cause of monogenic obesity in humans. MC4R mutation analysis in a cohort of 77 children with morbid obesity identified previously unreported heterozygous mutations (P272L, N74I) in two patients inherited from their obese mothers. A rare polymorphism (I251L, allelic frequency: 1/100) reported to protect against obesity was found in another obese patient. When expressed in neuronal cells, the cell surface abundance of wild-type MC4R and of the N74I and I251L variants and the cAMP generated by these receptors in response to exposure to the agonist, α-MSH, were not different. Conversely, MC4R P272L was retained in the endoplasmic reticulum and had reduced cell surface expression and signaling (by ≈3-fold). The chemical chaperone PBA, which promotes protein folding of wild-type MC4R, had minimal effects on the distribution and signaling of the P272L variant. In contrast, incubation with UBE-41, a specific inhibitor of ubiquitin activating enzyme E1, inhibited ubiquitination of MC4R P272L and increased its cell surface expression and signaling to similar levels as wild-type MC4R. UBE41 had much less profound effects on MC4R I316S, another obesity-linked MC4R variant trapped in the ER. These data suggest that P272L is retained in the ER by a propensity to be ubiquitinated in the face of correct folding, which is only minimally shared by MC4R I316S. Thus, studies that combine clinical screening of obese patients and investigation of the functional defects of the obesity-linked MC4R variants can identify specific ways to correct these defects and are the first steps towards personalized medicine.  相似文献   

13.
Saccharomyces cerevisiae is often used to produce heterologous proteins that are preferentially secreted to increase economic feasibility. We used N-glycosylation as a tool to enhance protein secretion. Secretion of cutinase, a lipase, and llama VHH antibody fragments by S. cerevisiae or Pichia pastoris improved following the introduction of an N-glycosylation site. When we introduced an N-glycosylation consensus sequence in the N-terminal region of a hydrophobic cutinase, secretion increased fivefold. If an N-glycosylation site was introduced in the C-terminal region, however, secretion increased only 1.8-fold. These results indicate that the use of N glycosylation can significantly enhance heterologous protein secretion.  相似文献   

14.
Clostridium perfringens iota toxin is a binary toxin composed of the enzymatically active component Ia and receptor binding component Ib. Ia is an ADP-ribosyltransferase, which modifies Arg177 of actin. The previously determined crystal structure of the actin-Ia complex suggested involvement of Asp179 of actin in the ADP-ribosylation reaction. To gain more insights into the structural requirements of actin to serve as a substrate for toxin-catalyzed ADP-ribosylation, we engineered Saccharomyces cerevisiae strains, in which wild type actin was replaced by actin variants with substitutions in residues located on the Ia-actin interface. Expression of the actin mutant Arg177Lys resulted in complete resistance towards Ia. Actin mutation of Asp179 did not change Ia-induced ADP-ribosylation and growth inhibition of S. cerevisiae. By contrast, substitution of Glu270 of actin inhibited the toxic action of Ia and the ADP-ribosylation of actin. In vitro transcribed/translated human β-actin confirmed the crucial role of Glu270 in ADP-ribosylation of actin by Ia.  相似文献   

15.
16.
Cancer-predisposing genes associated with inherited cancer syndromes help explain mechanisms of sporadic carcinogenesis and often inform normal development. Cowden syndrome (CS) is an autosomal-dominant disorder characterized by high lifetime risks of epithelial cancers, such that ∼50% of affected individuals are wild-type for known cancer-predisposing genes. Using whole-exome and Sanger sequencing of a multi-generation CS family affected by thyroid and other cancers, we identified a pathogenic missense heterozygous SEC23B variant (c.1781T>G [p.Val594Gly]) that segregates with the phenotype. We also found germline heterozygous SEC23B variants in 3/96 (3%) unrelated mutation-negative CS probands with thyroid cancer and in The Cancer Genome Atlas (TCGA), representing apparently sporadic cancers. We note that the TCGA thyroid cancer dataset is enriched with unique germline deleterious SEC23B variants associated with a significantly younger age of onset. SEC23B encodes Sec23 homolog B (S. cerevisiae), a component of coat protein complex II (COPII), which transports proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. Interestingly, germline homozygous or compound-heterozygous SEC23B mutations cause an unrelated disorder, congenital dyserythropoietic anemia type II, and SEC23B-deficient mice suffer from secretory organ degeneration due to ER-stress-associated apoptosis. By characterizing the p.Val594Gly variant in a normal thyroid cell line, we show that it is a functional alteration that results in ER-stress-mediated cell-colony formation and survival, growth, and invasion, which reflect aspects of a cancer phenotype. Our findings suggest a different role for SEC23B, whereby germline heterozygous variants associate with cancer predisposition potentially mediated by ER stress “addiction.”  相似文献   

17.
In eukaryotes, GPI (glycosylphosphatidylinositol) lipid anchoring of proteins is an abundant post-translational modification. The attachment of the GPI anchor is mediated by GPI-T (GPI transamidase), a multimeric, membrane-bound enzyme located in the ER (endoplasmic reticulum). Upon modification, GPI-anchored proteins enter the secretory pathway and ultimately become tethered to the cell surface by association with the plasma membrane and, in yeast, by covalent attachment to the outer glucan layer. This work demonstrates a novel in vivo assay for GPI-T. Saccharomyces cerevisiae INV (invertase), a soluble secreted protein, was converted into a substrate for GPI-T by appending the C-terminal 21 amino acid GPI-T signal sequence from the S. cerevisiae Yapsin 2 [Mkc7p (Y21)] on to the C-terminus of INV. Using a colorimetric assay and biochemical partitioning, extracellular presentation of GPI-anchored INV was shown. Two human GPI-T signal sequences were also tested and each showed diminished extracellular INV activity, consistent with lower levels of GPI anchoring and species specificity. Human/fungal chimaeric signal sequences identified a small region of five amino acids that was predominantly responsible for this species specificity.  相似文献   

18.
Hydrophobins are amphipathic proteins secreted by filamentous fungi. When the industrial fungus Aspergillus oryzae is grown in a liquid medium containing the polyester polybutylene succinate co‐adipate (PBSA), it produces RolA, a hydrophobin, and CutL1, a PBSA‐degrading cutinase. Secreted RolA attaches to the surface of the PBSA particles and recruits CutL1, which then condenses on the particles and stimulates the hydrolysis of PBSA. Here, we identified amino acid residues that are required for the RolA–CutL1 interaction by using site‐directed mutagenesis. We quantitatively analyzed kinetic profiles of the interactions between RolA variants and CutL1 variants by using a quartz crystal microbalance (QCM). The QCM analyses revealed that Asp142, Asp171 and Glu31, located on the hydrophilic molecular surface of CutL1, and His32 and Lys34, located in the N‐terminus of RolA, play crucial roles in the RolA–CutL1 interaction via ionic interactions. RolA immobilized on a QCM electrode strongly interacted with CutL1 (KD = 6.5 nM); however, RolA with CutL1 variants, or RolA variants with CutL1, showed markedly larger KD values, particularly in the interaction between the double variant RolA‐H32S/K34S and the triple variant CutL1‐E31S/D142S/D171S (KD = 78.0 nM). We discuss a molecular prototype model of hydrophobin‐based enzyme recruitment at the solid–water interface.  相似文献   

19.
High-level extracellular production of Fusarium solani cutinase was achieved using a Pichia pastoris expression system. The cutinase-encoding gene was cloned into pPICZαA with the Saccharomyces cerevisiae α-factor signal sequence and methanol-inducible alcohol oxidase promoter by two different ways. The additional sequences of the c-myc epitope and (His)6-tag of the vector were fused to the C-terminus of cutinase, while the other expression vector was constructed without any additional sequence. P. pastoris expressing the non-tagged cutinase exhibited about two- and threefold higher values of protein amount and cutinase activity in the culture supernatant, respectively. After simple purification by diafiltration process, both cutinases were much the same in the specific activity and the biochemical properties such as the substrate specificity and the effects of temperature and pH. In conclusion, the high-level secretion of F. solani cutinase in P. pastoris was demonstrated for the first time and would be a promising alternative to many expression systems previously used for the large-scale production of F. solani cutinase in Saccharomyces cerevisiae as well as Escherichia coli.  相似文献   

20.
Tofu wastewater can be utilized as a substrate for microorganisms that produce single-cell proteins (SCPs). Because different microorganisms have different cellular components, the composition of SCPs varies. Electro-stimulation has the potential to speed up fermentation and increase product yield. The goal of this study was to find the best way to produce SCPs from Aspergillus awamori, Rhizopus oryzae, and Saccharomyces cerevisiae in the tofu wastewater substrate using electro-stimulation. The experimental method was used in the study, the data were analyzed using independent t-test statistical analysis, and the best treatment was identified using the effective index method. This treatment consisted of producing SCP with electro-stimulation of −1.5 V and without electro-stimulation for 72 h for the yeast and 96 h for the mold at 25 °C in tofu wastewater that had already been conditioned to a pH of 5. The parameters measured included measurement of population of microorganism, change in pH, dry biomass weight, carbohydrate content, and protein content. Electro-stimulation reduced the optimum fermentation time of A. awamori SCP from 56 to 32 h, resulting in 0.0406 g/50 mL of dry biomass, 30.09% carbohydrate content, and 6.86% protein content. Meanwhile, the optimal fermentation time on R. oryzae and S. cerevisiae were not accelerated by electro-stimulation. The best treatment was A. awamori without electro-stimulation, which produced 0.0931 g/50 mL of dry biomass, 20.29% carbohydrate, and 7.55% protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号