首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the design, construction, and testing of a contact lens with an integrated amperometric glucose sensor, proposing the possibility of in situ human health monitoring simply by wearing a contact lens. The glucose sensor was constructed by creating microstructures on a polymer substrate, which was subsequently shaped into a contact lens. Titania sol-gel film was applied to immobilize glucose oxidase, and Nafion? was used to decrease several potential interferences (ascorbic acid, lactate, and urea) present in the tear film. The sensor exhibits a fast response (20s), a high sensitivity (240 μA cm(-2) mM(-1)) and a good reproducibility after testing a number of sensors. It shows good linearity for the typical range of glucose concentrations in the tear film (0.1-0.6 mM), and acceptable accuracy in the presence of interfering agents. The sensor can attain a minimum detection of less than 0.01 mM glucose.  相似文献   

2.
A novel type of bioelectronic region ion sensitive field effect transistor (RISFET) nanosensor was constructed and demonstrated on two different sensor chips that could measure glucose with good linearity in the range of 0–0.6 mM and 0–0.3 mM with a limit of detection of 0.1 and 0.04 mM, respectively. The sensor is based on the principle of focusing charged reaction products with an electrical field in a region between the sensing electrodes. For glucose measurements, negatively charged gluconate ions were gathered between the sensing electrodes. The signal current response was measured using a low-noise pico ammeter (pA). Two different sizes of the RISFET sensor chips were constructed using conventional electron beam lithography. The measurements are done in partial volumes mainly restricted by the working distance between the sensing electrodes (790 and 2500 nm, respectively) and the influence of electrical fields that are concentrating the ions. The sensitivity was 28 pA/mM (2500 nm) and 830 pA/mM (790 nm), respectively. That is an increase in field strength by five times between the sensing electrodes increased the sensitivity by 30 times. The volumes expressed in this way are in low or sub femtoliter range. Preliminary studies revealed that with suitable modification and control of parameters such as the electric control signals and the chip electrode dimensions this sensor could also be used as a nanobiosensor by applying single enzyme molecule trapping. Hypotheses are given for impedance factors of the RISFET conducting channel.  相似文献   

3.
For biosensor fabrication, it is important to optimize materials and methods in order to create predictable function in vitro and in vivo. For this reason, we designed a new glucose sensor ('revised protocol') that utilized an outer permselective membrane made of amphiphobic polyurethane which allows glucose passage through hydrophilic segments. An inner polyethersulfone membrane, stabilized with a trimethoxysilane, provided specificity. Before application of the inner membrane, it was necessary to etch the platinum electrode with a radio frequency oxygen plasma. The revised protocol sensors (n=185) were compared with sensors fabricated with an earlier ('original') protocol (n=204) which used an outer polyurethane without hydrophilic segments and a complex inner membrane of cellulose acetate and Nafion. The function of revised protocol sensors was more predictable in vitro as evidenced by a much lower variation of glucose sensitivity than the original protocol sensors. Revised and original protocol sensors were nearly linear up to a glucose concentration of 20 mM. In vitro interference from 0.1 mM acetaminophen was minimal in both groups of sensors and would be expected to represent about 2% of the total sensor response at normal glucose levels for revised protocol sensors. Prolonged testing of the revised protocol sensors for 11 days during immersion in buffer revealed stable sensitivities (day 1: 6.12+/-1.34 nA/mM; day 3: 6.33+/-1.40; day 8: 7.13+/-1.39; and day 11: 7.56+/-1.47; sensitivity for day 1 vs. each other day: not significant) and no critical loss of glucose oxidase activity. The response of the revised protocol sensors (n=7) to intraperitoneal glucose was tested in rats approximately one day after subcutaneous implantation and the sensors tracked glucose closely with a slight lag of 3-6 min.  相似文献   

4.
The current study was made to develop a biosensor based on a single-chamber microbial fuel cell in which anaerobes were retained in the anode compartment separated from the cathode compartment by a proton exchange membrane. In the sensor a replaceable anaerobic consortium was used for analyzing biodegradable organic matter. The anaerobes acted as biocatalysts in oxidizing organic matter and transferring electrons to the anode. The biocatalysts were renewed for each sample analysis by replacing the old anaerobic consortium with an equal amount of fresh one. A glucose standard solution was used as the target substrate. To obtain the maximum sensor output, the MFC-based sensor system was optimized using an 800 Ω resistor as the load to the external electric circuit and 25 mM phosphate buffer with 50 mM NaCl as catholyte in the aerobic compartment. The temperature of anaerobic compartment was maintained at optimal 37 °C. The cell potential across the electrodes increased with increasing loading of glucose. The sensor response was linear against concentration of glucose up to 25 g l−1. The detection limit was found as 0.025 g l−1. The microbial fuel cell with replaceable anaerobic consortium could be used as a biosensor for on-line monitoring of organic matter.  相似文献   

5.
Containment sensors for the determination of L-lactate and glucose   总被引:3,自引:0,他引:3  
This paper reports some new results on enzyme based silicon containment sensors. For the first time an L-lactate sensor in containment technology is presented. Through optimization of the buffer system the stability of the lactate sensor was enhanced and the linear response of over 10 mM was achieved. The glucose sensor has also been optimized for a large linear measurement range exceeding 30 mM. A two-enzyme chip with glucose and lactate sensor elements which were integrated on one silicon chip is presented. The response behaviour of the two-enzyme chip was very similar to the single chip behaviour. No cross-talking effects could be observed. A fabrication process for mass-production is described.  相似文献   

6.
湖北省不同花生轮作种植体系碳氮足迹   总被引:1,自引:0,他引:1  
明确作物生产过程的主要碳氮排放环节,可为不同花生轮作种植体系实现高产高效与低碳氮排放的协同效益提供有效参考。本研究对湖北省黄冈市油菜-花生轮作、小麦-花生轮作、花生单作3种种植模式生产过程的农资投入和田间管理措施等进行实地调查,核算该3种种植模式的碳足迹和氮足迹。结果表明: 油菜-花生轮作较小麦-花生轮作单位面积碳排放降低7.8%、单位净现值碳排放降低36.9%、单位面积氮排放降低12.5%、单位净现值氮排放降低41.9%;油菜-花生轮作较花生单作单位净现值碳排放和氮排放分别降低19.6%和30.8%;油菜-花生轮作净收益是小麦-花生轮作的1.4倍、花生单作的2.4倍。表明油菜-花生轮作可实现高产高效与低碳氮排放的协同效益,有利于油料作物的绿色高质高效生产。  相似文献   

7.
中国农作物生产碳足迹及其空间分布特征   总被引:4,自引:0,他引:4  
基于中国1993—2013年的农业统计数据,采用生命周期评价、重心模型以及GIS等方法分析农作物生产碳排放及碳足迹的时序变化、碳足迹重心的移动轨迹、碳排放和碳足迹的空间分布特征以及影响碳排放的主导因素.结果表明: 研究期间,中国农作物生产碳排放量(GHGe)、单位播种面积碳足迹(CFs)和单位耕地面积碳足迹(CFc)均显著增加,而单位产量碳足迹(CFy)和单位产值碳足迹(CFv)显著减少.CFs重心一直分布在河南,且逐渐移向西南;CFc重心位于湖北或河南,并向西北方向移动;CFy重心位于陕西或河南,且整体移向东南;CFv重心始终在河南,并逐渐移向西南.GHGe和碳足迹存在显著的省域差异,GHGe具有南北低、中部高的特点,CFs是东西两翼高、中间低,CFc高值区主要集中在中部及东部沿海省份,CFy在西北-东南方向上表现为“高-低-高”,CFv在西北-东南方向上则是由高走低.农业生产过程中不同投入占农作物碳足迹的比例以化肥最为突出,化肥投入构成中以氮肥和复合肥所占比例较大.通过分析GHGe与各影响因素的关联度,得出化肥尤其是磷肥和氮肥、灌溉以及农田N2O排放是导致GHGe显著增加的主导因素,并据此提出发展低碳农业的对策建议.  相似文献   

8.
An enzymeless glucose biosensor based on polypyrrole nanofibers-supporting Au nanoparticles (Au/PPyNFs) was investigated in this study. The Au/PPyNFs heterogeneous composite materials were synthesized in-situ via hydrogen bonding interactions for the assembly of polyethyleneimine (PEI) on the surface of polypyrrole nanofibers (PPyNFs). By changing the molar ratio of PPy to HAuCl(4), Au/PPyNFs with different Au loadings were obtained. The morphology and composition of Au/PPyNFs were characterized using SEM, TEM, FTIR, XRD and XPS, respectively. The hybrids exhibited a high electrocatalytic activity toward glucose oxidation, which is prerequisite for the catalysts to be applied in amperometric glucose sensors. By using the nonenzymatic glucose sensor based on Au/PPyNFs, 0.2-13mM glucose can be detected with a sensitivity of 1.003μAcm(-2)mM(-1) and a good linearity (R(2)=0.9993) between current density and glucose concentration. The proposed glucose sensor provides a promising strategy to construct fast, sensitive, and anti-interfering amperometric sensors for early diagnosis and prevention of diabetes.  相似文献   

9.
云南省农田生态系统碳足迹时空变化及其影响因素   总被引:4,自引:0,他引:4  
李明琦  刘世梁  武雪  孙永秀  侯笑云  赵爽 《生态学报》2018,38(24):8822-8834
农田碳足迹研究对农田生态系统管理与农业可持续发展具有重要意义,也可表征农田扩展的生态影响程度。利用县域尺度统计数据与空间分析,对云南省农田生态系统近30年的碳足迹的时空演变进行研究。结果表明:1985—2015年期间,云南省农田生态系统碳排放年均增幅为13.9%,化肥施用引起的碳排放贡献率最大,为56%,2015年的化肥单位面积碳排放达到331.6kg/hm2。云南省农田生态系统碳吸收年均增幅为3.04%,稻谷的碳吸收比例最大,为41%,然而,玉米的碳吸收的增幅最大,为8.76%。云南省农田生态系统存在碳生态盈余,且碳足迹总体呈现增长趋势,年均增长率为16.8%,单位面积碳足迹随年份增加不断增长。从空间上看,云南省农田生态系统碳排放、碳吸收在空间上均呈东南高、西北低的分布格局,而碳足迹在空间上呈现东西部高、中部低的分布格局,三者的空间差异和变化幅度差异都较大。  相似文献   

10.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a sol-gel composite at the surface of a basal plane pyrolytic graphite (bppg) electrode modified with multiwall carbon nanotube. First, the bppg electrode is subjected to abrasive immobilization of carbon nanotubes by gently rubbing the electrode surface on a filter paper supporting the carbon nanotubes. Second, the electrode surface is covered with a thin film of a sol-gel composite containing encapsulated glucose oxidase. The carbon nanotubes offer excellent electrocatalytic activity toward reduction and oxidation of hydrogen peroxide liberated in the enzymatic reaction between glucose oxidase and glucose, enabling sensitive determination of glucose. The amperometric detection of glucose is carried out at 0.3 V (vs saturated calomel electrode) in 0.05 M phosphate buffer solution (pH 7.4) with linear response range of 0.2-20 mM glucose, sensitivity of 196 nA/mM, and detection limit of 50 microM (S/N=3). The response time of the electrode is < 5s when it is stored dried at 4 degrees C, the sensor showed almost no change in the analytical performance after operation for 3 weeks. The present carbon nanotube sol-gel biocomposite glucose oxidase sensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and rapid response and in comparison to bulk modified composite biosensors the amounts of enzyme and carbon nanotube needed for electrode fabrication are dramatically decreased.  相似文献   

11.
This paper presents a rapid, highly-sensitive, and low-cost method of endotoxin quantification based on the use of stress-responsive magnetoelastic sensors, that monitor the gel formation (viscosity change) of the Limulus Amoebocyte Lysate (LAL) assay in response to endotoxin. Ribbon-like magnetoelastic sensors, 12.7 mm × 6 mm × 28 μm, were immersed in a LAL assay after mixing with test samples of variable endotoxin concentration, and the decrease in resonance amplitude of the sensor was recorded as a function of time. Experimental results show excellent correlation between endotoxin concentration and the maximum clot rate, determined by taking the minimum point of the first derivative of the amplitude–time curve, as well as the clotting-time, defined as the time that corresponds to the maximum clot rate. Using a LAL gel–clot assay with a sensitivity of 0.06 EU/ml (EU: endotoxin unit), the magnetoelastic sensor based technology can detect the presence of endotoxin at 0.0105 EU/ml in test requiring approximately 20 min. Unlike optical methods used for determining endotoxin concentration, the color of the test solution does not impact the magnetoelastic sensor measurement. Due to the small size of the sensor reader electronics and low cost, the magnetoelastic sensor based endotoxin detection system is ideally suited for wide-spread use in endotoxin screening for sepsis prevention.  相似文献   

12.
Zhao ZX  Qiao MQ  Yin F  Shao B  Wu BY  Wang YY  Wang XS  Qin X  Li S  Yu L  Chen Q 《Biosensors & bioelectronics》2007,22(12):3021-3027
Hydrophobins are a family of natural self-assembling proteins with high biocompability, which are apt to form strong and ordered assembly onto many kinds of surfaces. These physical-chemical and biological properties make hydrophobins suitable for surface modification and biomolecule immobilization purposes. A class II hydrophobin HFBI was used as enzyme immobilization matrix on platinum electrode to construct amperometric glucose biosensor. Permeability of HFBI self-assembling film was optimized by selecting the proper HFBI concentration for electrode modification, in order to allow H2O2 permeating while prevent interfering compounds accessing. HFBI self-assembly and glucose oxidase (GOx) immobilization was monitored by quartz crystal microbalance (QCM), and characterization of the modified electrode surface was obtained by scanning electron microscope (SEM). The resulting glucose biosensors showed rapid response time within 6 s, limits of detection of 0.09 mM glucose (signal-to-noise ratio = 3), wide linear range from 0.5 to 20 mM, high sensitivity of 4.214 × 10−3 A M−1 cm−2, also well selectivity, reproducibility and lifetime. The all-protein modified biosensor exhibited especially high efficiency of enzyme utilization, producing at most 712 μA responsive current for per unit activity of GOx. This work provided a promising new immobilization matrix with high biocompatibility and adequate electroactivity for further research in biosensing and other surface functionalizing.  相似文献   

13.
An immersible manometric sensor was made by covering the gaseous cavity of a pressure transducer with a 1 microm controlled pore membrane. Transfer of gas across the membrane allowed the pressure transducer to record changes in humidity or dissolved gas when immersed in solution. By immersing the sensor in distilled water, atmospheric humidity could be estimated by the deficit of atmospheric vapor pressure from saturation. In another application of the sensor, CO(2) was monitored continuously. This was not possible in previous closed-reactor type manometric sensors, and may allow the new technology to be used in applications requiring continuous monitoring of a process or stream. By coupling the sensor with enzymes liberating or consuming dissolved gas, different chemicals could be estimated. Urea was estimated by first hydrolyzing it with urease and then measuring the resulting CO(2) gas in solution. Glucose was measured through its enzymatic oxidation by glucose oxidase. The sensitivity to urea over the range 0-2.5 mM was about 1.02 kPa/mM, and the standard error was 0.086 mM. Due to the lower solubility of oxygen, the sensitivity to glucose in a range from 0 to 10 microM was over 100 kPa/mM, with a standard error of only 0.76 microM. This sensitivity was not possible in closed-reactor type manometric sensors due to constraints of dimensioning the head space gas volume for reproducibility and effective mass transfer. The 90% rise times for the sensor ranged from about 1-60 min for the different applications. The dynamic characteristics of the device may be improved by using a membrane with greater porosity, higher rigidity and lower thickness, and by reducing the dimensions of the cavity volume in the sensor through integrated microfabrication of the membrane onto the transducer.  相似文献   

14.
A bioelectrocatalysis system based on titania nanotube electrode has been developed for the quantitative detection application. Highly ordered titania nanotube array with inner diameter of 60 nm and total length of 540 nm was formed by anodizing titanium foils. The functionalization modification was achieved by embedding glucose oxidases inside tubule channels and electropolymerizing pyrrole for interfacial immobilization. Morphology and microstructure characterization, electrochemical properties and bioelectrocatalytic reactivities of this composite were fully investigated. The direct detection of hydrogen peroxide by electrocatalytic reduction reaction was fulfilled on pure titania nanotube array with a detection limit up to 2.0 × 10−4 mM. A biosensor based on the glucose oxidase–titania/titanium electrode was constructed for amperometric detection and quantitative determination of glucose in a phosphate buffer solution (pH 6.8) under a potentiostatic condition (−0.4 V versus SCE). The resulting glucose biosensor showed an excellent performance with a response time below 5.6 s and a detection limit of 2.0 × 10−3 mM. The corresponding detection sensitivity was 45.5 μA mM−1 cm−2. A good operational reliability was also achieved with relative standard deviations below 3.0%. This novel biosensor exhibited quite high response sensitivity and low detection limit for potential applications.  相似文献   

15.
An amperometric-mediated glucose sensor has been developed by employing a silica sono-gel carbon composite electrode (SCC). The chosen mediators, ferrocene (Fc) and 1,2-diferrocenylethane (1), have been immobilized in the sono-gel composite matrix. The complex 1 has been employed for the first time as an electron transfer mediator for signal transduction from the active centre of the enzyme to the electrode conductive surface. After the optimisation of the construction procedure the best operative conditions for the analytical performance of the biosensor have been investigated in terms of pH, temperature and applied potential. Cyclic voltammetric and amperometric measurements have been used to study the response of both the glucose sensors, which exhibit a fast response and good reproducibility. The sensitivity to glucose is quite similar (6.7+/-0.1 microA/mM versus 5.3+/-0.1 microA/mM) when either Fc or 1 are used as mediators as are the detection limit ca. 1.0 mM (S/N=3) and the range of linear response (up to 13.0 mM). However, the dynamic range for glucose determination results wider when using 1 (up to 25.0 mM). The apparent Michaelis-Menten constants, calculated from the reciprocal plot under steady state conditions, are 27.7 and 31.6 mM for SCC-Fc/GOx and SCC-1/GOx electrodes, respectively, in agreement with a slightly higher electrocatalytic efficiency for the mediator 1.  相似文献   

16.
In present studies, the new optical sensing platform based on optical planar waveguide (OPWG) for sucrose estimation was reported. An evanescent-wave biosensor was designed by using novel agarose–guar gum (AG) biopolymer composite sol–gel with entrapped enzymes (acid invertase (INV) and glucose oxidase (GOD)). Partially purified watermelon invertase isolated from Citrullus vulgaris fruit (specific activity 832 units mg−1) in combination with GOD was physically entrapped in AG sol–gel and cladded on the surface of optical planar waveguide. Na+–K+ ion-exchanged glass optical waveguides were prepared and employed for the fabrication of sucrose biosensor. By addressing the enzyme modified waveguide structure with, the optogeometric properties of adsorbed enzyme layer (12 μm) at the sensor solid–liquid interface were studied. The OPWG sensor with short response time (110 s) was characterized using the 0.2 M acetate buffer, pH 5.5. The fabricated sucrose sensor showed concentration dependent linear response in the range 1 × 10−10 to 1 × 10−6 M of sucrose. Lower limit of detection of this novel AG–INV–GOD cladded OPWG sensor was found to be 2.5 × 10−11 M sucrose, which indicates that the developed biosensor has higher sensitivity towards sucrose as compared to earlier reported sensors using various transducer systems. Biochips when stored at room temperature, showed high stability for 81 days with 80% retention of original sensitivity. These sucrose sensing biochips showed good operational efficiency for 10 cycles. The proper confinement of acid invertase and glucose oxidase in hydrogel composite was confirmed by scanning electron microscopy (SEM) images. The constructed OPWG sensor is versatile, easy to fabricate and can be used for sucrose measurements with very high sensitivity.  相似文献   

17.
Micromachining is a powerful tool in constructing micro biosensors and micro systems which incorporate them. A sensing module for blood components was fabricated using the technology. The analytes include glucose, urea, uric acid, creatine, and creatinine. Transducers used to construct the corresponding sensors were a Severinghaus-type carbon dioxide electrode for the urea sensor and a Clark-type oxygen electrode for the other analytes. In these electrodes, detecting electrode patterns were formed on a glass substrate by photolithography and the micro container for the internal electrolyte solution was formed on a silicon substrate by anisotropic etching. A through-hole was formed in the sensitive area, where a silicone gas-permeable membrane was formed and an enzyme was immobilized. The sensors were characterized in terms of pH and temperature dependence and calibration curves along with detection limits. Furthermore, the sensors were incorporated in an acrylate flow cell. Simultaneous operation of these sensors was successfully conducted and distinct and stable responses were observed for respective sensors.  相似文献   

18.
Yang Y  Yi C  Luo J  Liu R  Liu J  Jiang J  Liu X 《Biosensors & bioelectronics》2011,26(5):2607-2612
A voltammetric glucose sensor was prepared from novel molecularly imprinted polymeric micelles (MIPMs) through direct electrodeposition. The MIPMs, which were photo-crosslinkable and nano-scaled with high specific surface area, were prepared via macromolecule self-assembly of an amphiphilic photo-crosslinkable copolymer, combined with a molecular imprinting technique using glucose as the template molecule. A MIP film was formed in situ on the electrode surface by electrodeposition of the MIPMs, while photo-crosslinking led to a robust film which showed good solvent resistant to dissolution. With these features, the resulting sensor showed good response and selectivity towards glucose. In particular, the linear response of this glucose sensor ranged from 0.2 mM to 8 mM and its comparatively higher detection limit, about 10 mM, indicated numerous effective recognition sites among the polymer matrix due to the large specific surface area of MIPM. In addition, this MIP sensor also showed good stability and reversibility. The contribution of this work lies in not only the invention of a new type of glucose MIP sensor with good performance, but also the creation of a novel strategy to develop advanced MIP sensors for a wide range of templates in viewing of the versatility of the amphiphilic copolymers and the ease of control and applicability of the electrodeposition process.  相似文献   

19.
The present communication demonstrates a relatively green preparative route toward Au nanoplates in aqueous solution at room temperature with the use of tannic acid (TA), which is an environmentally friendly, soluble polyphenol, as a reducing agent. Such Au nanoplates exhibit notable catalytic performance toward the oxidation and reduction of H(2)O(2). A glucose biosensor was further fabricated by immobilizing glucose oxidase (GOD) into chitosan-Au nanoplate composites film on the surface of glassy carbon electrode (GCE). This sensor exhibits good response to glucose, and the linear response range is estimated to be from 2 to 20 mM (R=0.999) at 0.65 V and from 2 to 10 mM (R=0.993) at -0.2 V, respectively. The sensitivity of the sensor determined from the slopes is 49.5 μA mM(-1)cm(-2) at 0.65 V.  相似文献   

20.
The feasibility of dissolved‐core alginate‐templated fluorescent microspheres as “smart tattoo” glucose biosensors was investigated in simulated interstitial fluid (SIF). The sensor works on the principle of competitive binding and fluorescence resonance energy transfer. The sensor consists of multilayer thin film coated alginate microspheres incorporating dye‐labeled glucose receptor and competing ligand within the partially dissolved alginate core. In this study, different approaches for the sensing and detection chemistry were studied, and the response of encapsulated reagents was compared with the solution‐phase counterparts. The glucose sensitivity of the encapsulated TRITC‐Con A/FITC‐dextran (500 kDa) assay in DI water was estimated to be 0.26%/mM glucose while that in SIF was observed to be 0.3%/mM glucose. The glucose sensitivity of TRITC‐apo‐GOx/FITC‐dextran (500 kDa) assay was estimated to be 0.33%/mM glucose in DI water and 0.5%/mM glucose in SIF and both demonstrated a response in the range of 0–50 mM glucose. Therefore, it is hypothesized that the calcium ion concentration outside the microsphere (in the SIF) does not interfere with the response sensitivity. The sensor response was observed to exhibit a maximum response time of 120 s. The system further exhibited a sensitivity of 0.94%/mM glucose with a response in range of 0–50 mM glucose, using near‐infrared dyes (Alexa Fluor‐647‐labeled dextran as donor and QSY‐21‐conjugated apo‐GOx as acceptor), thereby making the sensor more amenable to in vivo use, when implanted in scattering tissue. Biotechnol. Bioeng. 2009; 104: 1075–1085. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号