首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Previous imaging studies on functional dyspepsia (FD) have focused on abnormal brain functions during special tasks, while few studies concentrated on the resting-state abnormalities of FD patients, which might be potentially valuable to provide us with direct information about the neural basis of FD. The main purpose of the current study was thereby to characterize the distinct patterns of resting-state function between FD patients and healthy controls (HCs).

Methodology/Principal Findings

Thirty FD patients and thirty HCs were enrolled and experienced 5-mintue resting-state scanning. Based on the support vector machine (SVM), we applied multivariate pattern analysis (MVPA) to investigate the differences of resting-state function mapped by regional homogeneity (ReHo). A classifier was designed by using the principal component analysis and the linear SVM. Permutation test was then employed to identify the significant contribution to the final discrimination. The results displayed that the mean classifier accuracy was 86.67%, and highly discriminative brain regions mainly included the prefrontal cortex (PFC), orbitofrontal cortex (OFC), supplementary motor area (SMA), temporal pole (TP), insula, anterior/middle cingulate cortex (ACC/MCC), thalamus, hippocampus (HIPP)/parahippocamus (ParaHIPP) and cerebellum. Correlation analysis revealed significant correlations between ReHo values in certain regions of interest (ROI) and the FD symptom severity and/or duration, including the positive correlations between the dmPFC, pACC and the symptom severity; whereas, the positive correlations between the MCC, OFC, insula, TP and FD duration.

Conclusions

These findings indicated that significantly distinct patterns existed between FD patients and HCs during the resting-state, which could expand our understanding of the neural basis of FD. Meanwhile, our results possibly showed potential feasibility of functional magnetic resonance imaging diagnostic assay for FD.  相似文献   

2.
目的 偏头痛是一种复杂的脑功能障碍性疾病,全球范围内患病率为14.4%。功能连接测量两个神经信号之间的统计学相互依赖性,不同的功能连接反映了大脑区域协同工作的不同模式。因此,研究不同脑区的功能连接对于理解偏头痛的病理生理机制具有十分重要的意义。以往基于脑电图对偏头痛患者脑功能连接的分析主要集中在视觉和疼痛刺激。本文尝试研究偏头痛患者在发作间期对体感刺激的皮质反应,以进一步了解偏头痛的神经功能障碍,为偏头痛的预防和治疗提供线索。方法 招募23例无先兆偏头痛患者,10例有先兆偏头痛患者,28名健康对照者。所有受试者均进行详细的基本资料和病史采集,完善量表评估,在正中神经体感刺激下进行脑电图记录。计算68个脑区的相干性作为功能连接,并评估功能连接与临床参数的相关性。结果 在正中神经体感刺激下,无先兆偏头痛和有先兆偏头痛患者的脑电功能连接与对照组相比存在差异,异常的脑电功能连接主要位于感觉辨别、疼痛调节、情绪认知和视觉处理等区域。无先兆偏头痛和有先兆偏头痛患者的大脑皮层对体感刺激可能具有相同的反应方式。偏头痛患者的功能连接异常与临床特征之间存在相关性,可以部分反映偏头痛的严重程度。结论 本研究...  相似文献   

3.
Parkinson’s disease (PD) is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37) compared to healthy controls (n = 20). Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine), but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence of altered motor function. Our analysis approach proved sensitive for detecting disease-related localized effects as well as changes in network functions on intermediate and global scale.  相似文献   

4.
Major depression and schizophrenia are two of the most serious psychiatric disorders and share similar behavioral symptoms. Whether these similar behavioral symptoms underlie any convergent psychiatric pathological mechanisms is not yet clear. To address this issue, this study sought to investigate the whole-brain resting-state functional magnetic resonance imaging (MRI) of major depression and schizophrenia by using multivariate pattern analysis. Thirty-two schizophrenic patients, 19 major depressive disorder patients and 38 healthy controls underwent resting-state functional MRI scanning. A support vector machine in conjunction with intrinsic discriminant analysis was used to solve the multi-classification problem, resulting in a correct classification rate of 80.9% via leave-one-out cross-validation. The depression and schizophrenia groups both showed altered functional connections associated with the medial prefrontal cortex, anterior cingulate cortex, thalamus, hippocampus, and cerebellum. However, the prefrontal cortex, amygdala, and temporal poles were found to be affected differently by major depression and schizophrenia. Our preliminary study suggests that altered connections within or across the default mode network and the cerebellum may account for the common behavioral symptoms between major depression and schizophrenia. In addition, connections associated with the prefrontal cortex and the affective network showed promise as biomarkers for discriminating between the two disorders.  相似文献   

5.

Background

Little is known about the changes of brain structural and functional connectivity networks underlying the pathophysiology in migraine. We aimed to investigate how the cortical network reorganization is altered by frequent cortical overstimulation associated with migraine.

Methodology/Principal Findings

Gray matter volumes and resting-state functional magnetic resonance imaging signal correlations were employed to construct structural and functional networks between brain regions in 43 female patients with migraine (PM) and 43 gender-matched healthy controls (HC) by using graph theory-based approaches. Compared with the HC group, the patients showed abnormal global topology in both structural and functional networks, characterized by higher mean clustering coefficients without significant change in the shortest absolute path length, which indicated that the PM lost optimal topological organization in their cortical networks. Brain hubs related to pain-processing revealed abnormal nodal centrality in both structural and functional networks, including the precentral gyrus, orbital part of the inferior frontal gyrus, parahippocampal gyrus, anterior cingulate gyrus, thalamus, temporal pole of the middle temporal gyrus and the inferior parietal gyrus. Negative correlations were found between migraine duration and regions with abnormal centrality. Furthermore, the dysfunctional connections in patients'' cortical networks formed into a connected component and three dysregulated modules were identified involving pain-related information processing and motion-processing visual networks.

Conclusions

Our results may reflect brain alteration dynamics resulting from migraine and suggest that long-term and high-frequency headache attacks may cause both structural and functional connectivity network reorganization. The disrupted information exchange between brain areas in migraine may be reshaped into a hierarchical modular structure progressively.  相似文献   

6.
ABSTRACT: BACKGROUND: Schizophrenia is a severe mental illness associated with the symptoms such as hallucination and delusion. The objective of this study was to investigate the abnormal resting-state functional connectivity patterns of schizophrenic patients which could identify furthest patients from healthy controls. METHODS: The whole-brain resting-state fMRI was performed on patients diagnosed with schizophrenia (n=22) and on age- and gender-matched, healthy control subjects (n=22). To differentiate schizophrenic individuals from healthy controls, the multivariate classification analysis was employed. The weighted brain regions were got by reconstruction arithmetic to extract highly discriminative functional connectivity information. RESULTS: The results showed that 93.2% (p<0.001) of the subjects were correctly classified via the leave-one-out cross-validation method. And most of the altered functional connections identified located within the visual cortical-, default-mode-, and sensorimotor network. Furthermore, in reconstruction arithmetic, the fusiform gyrus exhibited the greatest amount of weight. CONCLUSIONS: This study demonstrates that schizophrenic patients may be successfully differentiated from healthy subjects by using whole-brain resting-state fMRI, and the fusiform gyrus may play an important functional role in the physiological symptoms manifested by schizophrenic patients. The brain region of great weight may be the problematic region of information exchange in schizophrenia. Thus, our result may provide insights into the identification of potentially effective biomarkers for the clinical diagnosis of schizophrenia.  相似文献   

7.
Neuroimaging studies of obsessive-compulsive disorder have found abnormalities in orbitofronto-striato-thalamic circuitry, including the orbitofrontal cortex, anterior cingulate cortex, caudate, and thalamus, but few studies have explored abnormal intrinsic or spontaneous brain activity in the resting state. We investigated both intra- and inter-regional synchronized activity in twenty patients with obsessive-compulsive disorder and 20 healthy controls using resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) and functional connectivity methods were used to analyze the intra- and inter-regional synchronized activity, respectively. Compared with healthy controls, patients with obsessive-compulsive disorder showed significantly increased ReHo in the orbitofrontal cortex, cerebellum, and insula, and decreased ReHo in the ventral anterior cingulate cortex, caudate, and inferior occipital cortex. Based on ReHo results, we determined functional connectivity differences between the orbitofrontal cortex and other brain regions in both patients with obsessive-compulsive disorder and controls. We found abnormal functional connectivity between the orbitofrontal cortex and ventral anterior cingulate cortex in patients with obsessive-compulsive disorder compared with healthy controls. Moreover, ReHo in the orbitofrontal cortex was correlated with the duration of obsessive-compulsive disorder. These findings suggest that increased intra- and inter-regional synchronized activity in the orbitofrontal cortex may have a key role in the pathology of obsessive-compulsive disorder. In addition to orbitofronto-striato-thalamic circuitry, brain regions such as the insula and cerebellum may also be involved in the pathophysiology of obsessive-compulsive disorder.  相似文献   

8.

Introduction

Current pathophysiological theories of schizophrenia highlight the role of altered brain functional and anatomical connectivity. The cognitive division of anterior cingulate cortex (ACC-cd) is a commonly reported abnormal brain region in schizophrenia for its importance in cognitive control process. The aim of this study was to investigate the functional and anatomical connectivity of ACC-cd and its cognitive and clinical manifestation significance in schizophrenia by using the resting-state functional magnetic resonance imaging (fMRI) and the diffusion tensor imaging (DTI).

Methods

Thirty-three medicated schizophrenics and 30 well-matched health controls were recruited. Region-of-interest (ROI)-based resting-state functional connectivity analysis and Tract-Based Spatial Statistics (TBSS) were performed on 30 patients and 30 controls, and 24 patients and 29 controls, respectively. The Pearson correlation was performed between the imaging measures and the Stroop performance and scores of the Positive and Negative Syndrome Scale (PANSS), respectively.

Results

Patients with schizophrenia showed significantly abnormal in the functional connectivity and its hemispheric asymmetry of the ACC-cd with multiple brain areas, e.g., decreased positive connectivity with the bilateral putamen and caudate, increased negative connectivity with the left posterior cingulated cortex (PCC), increased asymmetry of connectivity strength with the contralateral inferior frontal gyrus (IFG). The FA of the right anterior cingulum was significantly decreased in patients group (p = 0.014). The abnormal functional and structural connectivity of ACC-cd were correlated with Stroop performance and the severity of the symptoms in patients.

Conclusions

Our results suggested that the abnormal connectivity of the ACC-cd might play a role in the cognitive impairment and clinical symptoms in schizophrenia.  相似文献   

9.
Resting-state functional magnetic resonance imaging (fMRI) has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS), a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo) analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG), left medial cingulate cortex (MCC), left lingual gyrus, right superior temporal gyrus (STG) and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC), right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027), and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028). This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.  相似文献   

10.

Background and Aims

Brain dysfunction in functional dyspepsia (FD) has been identified by multiple neuroimaging studies. This study aims to investigate the regional gray matter density (GMD) changes in meal-related FD patients and their correlations with clinical variables, and to explore the possible influence of the emotional state on FD patients’s brain structures.

Methods

Fifty meal-related FD patients and forty healthy subjects (HS) were included and underwent a structural magnetic resonance imaging scan. Voxel-based morphometry analysis was employed to identify the cerebral structure alterations in meal-related FD patients. Regional GMD changes'' correlations with the symptoms and their durations, respectively, have been analyzed.

Results

Compared to the HS, the meal-related FD patients showed a decreased GMD in the bilateral precentral gyrus, medial prefrontal cortex (MPFC), anterior cingulate cortex (ACC) and midcingulate cortex (MCC), left orbitofrontal cortex (OFC) and right insula (p<0.05, FWE Corrected, Cluster size>50). After controlling for anxiety and depression, the meal-related FD patients showed a decreased GMD in the bilateral middle frontal gyrus, left MCC, right precentral gyrus and insula (p<0.05, FWE Corrected, Cluster size>50). Before controlling psychological factors, the GMD decreases in the ACC were negatively associated with the symptom scores of the Nepean Dyspepsia Index (NDI) (r = −0.354, p = 0.048, Bonferroni correction) and the duration of FD (r = −0.398, p = 0.02, Bonferroni correction) respectively.

Conclusions

The regional GMD of meal-related FD patients, especially in the regions of the homeostatic afferent processing network significantly differed from that of the HS, and the psychological factors might be one of the essential factors significantly affecting the regional brain structure of meal-related FD patients.  相似文献   

11.
Recent developments in graph theory have heightened the need for investigating the disruptions in the topological structure of functional brain network in major depressive disorder (MDD). In this study, we employed resting-state functional magnetic resonance imaging (fMRI) and graph theory to examine the whole-brain functional networks among 42 MDD patients and 42 healthy controls. Our results showed that compared with healthy controls, MDD patients showed higher local efficiency and modularity. Furthermore, MDD patients showed altered nodal centralities of many brain regions, including hippocampus, temporal cortex, anterior cingulate gyrus and dorsolateral prefrontal gyrus, mainly located in default mode network and cognitive control network. Together, our results suggested that MDD was associated with disruptions in the topological structure of functional brain networks, and provided new insights concerning the pathophysiological mechanisms of MDD.  相似文献   

12.
《Gender Medicine》2008,5(1):62-73
Background: Little is known about possible gender differences among patients with functional dyspepsia (FD). Few studies have measured health-related quality of life (HRQoL) in patients with FD using a population-based control group as a reference.Objectives: This study aimed to determine the degree of HRQoL impairment among patients with FD, to assess the self-reported health impact resulting from the disease, and to analyze any gender differences.Methods: A questionnaire that included the HRQoL Short Form 36 (SF-36) Health Survey, Hospital Anxiety and Depression Scale, and other measurements was mailed to patients with FD identified from medical records. The control group was randomly selected from the general population in the same geographical area. Responses to the SF-36 were transferred to a standard scale ranging from 0 (the worst possible score) to 100 (the best possible score).Results: Responders were assigned to 2 gender-specific subgroups, each with 88 patients with FD and 344 randomly matched controls, all aged 18 to 65 years. Compared with the controls, the HRQoL of patients with FD was impaired in all SF-36 dimensions except one-role limitations caused by emotional problems. Female patients with FD had a significantly lower SF-36 score in the physical functioning dimension than did male patients (82.4 vs 90.5, respectively; P < 0.01). Both groups of patients with FD had impaired HRQoL compared with their respective control group in the dimensions of bodily pain (women: 69.3 vs 80.6, P < 0.001; and men: 75.8 vs 84.8, P < 0.001) and general health (women: 62.0 vs 75.6, P < 0.001; and men: 70.6 vs 78.6, P < 0.001). Additionally, women with FD had significant impairment compared with their respective control group in the dimensions of physical functioning (82.4 vs 89.3; P < 0.01) and physical role limitations (72.1 vs 85.9; P < 0.001). Depression was significantly more common among male patients with FD than among male controls (6.8% vs 2.0%, respectively; P < 0.05). More gastrointestinal comorbidity was reported among patients of both sexes compared with controls.Conclusions: This population-based case-control study reported HRQoL impairment overall among patients with FD. This impairment was more apparent in female patients than in female controls. Females with FD tended to be more negatively affected in their daily life than their male counterparts. These gender differences should be investigated further in future studies.  相似文献   

13.
Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients = 86.4%, controls = 96.2%; permutation test, p<0.0001) of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.  相似文献   

14.

Background

The apolipoprotein E epsilon 4 (APOE-4) is associated with a genetic vulnerability to Alzheimer''s disease (AD) and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called “lagged phase synchronization”.

Methodology/Principal Findings

Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions.

Conclusions/Significance

In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially represent neurophysiological or phenotypic markers of AD, and aid in early detection of the disorder.  相似文献   

15.
目的:探讨枸橼酸莫沙必利分散片对老年功能性消化不良(FD)患者胃功能的影响。方法:将2012年3月~2014年3月我院79例老年FD患者(FD组)给予口服枸缘酸莫沙必利分散片,并随机抽取同一时期120例我院健康体检者为对照组,检测并比较两组的胃底气体的评分、延迟排空相、近端胃容积以及近端胃液体半排空时间。结果:FD组治疗前延迟排空相大于对照组,近端胃液体半排空时间小于对照组,差异有统计学意义(P0.05),两组的胃底气体的评分差异无统计学意义(P0.05);FD组治疗后延迟排空相小于治疗前,近端胃液体半排空时间大于治疗前,差异有统计学意义(P0.05);FD组治疗前0 min、5 min、15 min、30min、60 min的近端胃容积均小于对照组,差异均有统计学意义(P0.05);FD组治疗后各时刻近端胃容积大于治疗前,差异均有统计学意义(P0.05)。结论:老年FD患者采用枸缘酸莫沙必利分散片治疗可明显改善患者的胃功能,促进胃排空的速度,值得临床推广。  相似文献   

16.
Liu J  Qin W  Nan J  Li J  Yuan K  Zhao L  Zeng F  Sun J  Yu D  Dong M  Liu P  von Deneen KM  Gong Q  Liang F  Tian J 《PloS one》2011,6(11):e27049

Background

Migraine shows gender-specific incidence and has a higher prevalence in females. However, little is known about gender-related differences in dysfunctional brain organization, which may account for gender-specific vulnerability and characteristics of migraine. In this study, we considered gender-related differences in the topological property of resting functional networks.

Methodology/Principal Findings

Data was obtained from 38 migraine patients (18 males and 20 females) and 38 healthy subjects (18 males and 20 females). We used the graph theory analysis, which becomes a powerful tool in investigating complex brain networks on a whole brain scale and could describe functional interactions between brain regions. Using this approach, we compared the brain functional networks between these two groups, and several network properties were investigated, such as small-worldness, network resilience, nodal centrality, and interregional connections. In our findings, these network characters were all disrupted in patients suffering from chronic migraine. More importantly, these functional damages in the migraine-affected brain had a skewed balance between males and females. In female patients, brain functional networks showed worse resilience, more regions exhibited decreased nodal centrality, and more functional connections revealed abnormalities than in male patients.

Conclusions

These results indicated that migraine may have an additional influence on females and lead to more dysfunctional organization in their resting functional networks.  相似文献   

17.
目的:调查老年睡眠障碍患者胃管反流病(GERD)、功能性肠病(FBD)及功能性消化不良(FD)的患病现况。方法:选择参加我院2012年春季体检人员中有睡眠障碍的患者为调查对象,进行"消化道症状问卷"调查,并按年龄分层进行比较。结果:共入选377例睡眠障碍患者,老年组确诊为GERD、FBD及FD患者129例(53.53%),发生率明显高于成年患者(45例,33.06%)(P0.01)。老年睡眠障碍患者中GERD和功能性便秘的发生率明显高于成年组,而FD及肠易激综合征患病的发生率均明显低于后者(P均0.01~0.05);老年睡眠障碍患者重叠型及GERD+FBD各亚型重叠发生率明显高于成年组,而单一型发生率明显低于后者(P均0.01~0.05)。结论:老年睡眠障碍患者GERD、FBD及FD的发生率均较成年人高,且以GERD及功能性便秘为主。  相似文献   

18.
Affective instability and self-injurious behavior are important features of Borderline Personality Disorder. Whereas affective instability may be caused by a pattern of limbic hyperreactivity paired with dysfunctional prefrontal regulation mechanisms, painful stimulation was found to reduce affective arousal at the neural level, possibly underlying the soothing effect of pain in BPD.We used psychophysiological interactions to analyze functional connectivity of (para-) limbic brain structures (i.e. amygdala, insula, anterior cingulate cortex) in Borderline Personality Disorder in response to painful stimulation. Therefore, we re-analyzed a dataset from 20 patients with Borderline Personality Disorder and 23 healthy controls who took part in an fMRI-task inducing negative (versus neutral) affect and subsequently applying heat pain (versus warmth perception).Results suggest an enhanced negative coupling between limbic as well as paralimbic regions and prefrontal regions, specifically with the medial and dorsolateral prefrontal cortex, when patients experienced pain in addition to emotional arousing pictures. When neutral pictures were combined with painful heat sensation, we found positive connectivity in Borderline Personality Disorder between (para-)limbic brain areas and parts of the basal ganglia (lentiform nucleus, putamen), as well areas involved in self-referential processing (precuneus and posterior cingulate).We found further evidence for alterations in the emotion regulation process in Borderline Personality Disorder, in the way that pain improves the inhibition of limbic activity by prefrontal areas. This study provides new insights in pain processing in BPD, including enhanced coupling of limbic structures and basal ganglia.  相似文献   

19.
Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.  相似文献   

20.
We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号