首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 958 毫秒
1.
Yuan K  Qin W  Wang G  Zeng F  Zhao L  Yang X  Liu P  Liu J  Sun J  von Deneen KM  Gong Q  Liu Y  Tian J 《PloS one》2011,6(6):e20708

Background

Recent studies suggest that internet addiction disorder (IAD) is associated with structural abnormalities in brain gray matter. However, few studies have investigated the effects of internet addiction on the microstructural integrity of major neuronal fiber pathways, and almost no studies have assessed the microstructural changes with the duration of internet addiction.

Methodology/Principal Findings

We investigated the morphology of the brain in adolescents with IAD (N = 18) using an optimized voxel-based morphometry (VBM) technique, and studied the white matter fractional anisotropy (FA) changes using the diffusion tensor imaging (DTI) method, linking these brain structural measures to the duration of IAD. We provided evidences demonstrating the multiple structural changes of the brain in IAD subjects. VBM results indicated the decreased gray matter volume in the bilateral dorsolateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), the orbitofrontal cortex (OFC), the cerebellum and the left rostral ACC (rACC). DTI analysis revealed the enhanced FA value of the left posterior limb of the internal capsule (PLIC) and reduced FA value in the white matter within the right parahippocampal gyrus (PHG). Gray matter volumes of the DLPFC, rACC, SMA, and white matter FA changes of the PLIC were significantly correlated with the duration of internet addiction in the adolescents with IAD.

Conclusions

Our results suggested that long-term internet addiction would result in brain structural alterations, which probably contributed to chronic dysfunction in subjects with IAD. The current study may shed further light on the potential brain effects of IAD.  相似文献   

2.
Resting state functional magnetic resonance imaging (fMRI) has been commonly used to measure functional connectivity between cortical regions, while diffusion tensor imaging (DTI) can be used to characterize structural connectivity of white matter tracts. In principle combining resting state fMRI and DTI data could allow characterization of structure-function relations of distributed neural networks. However, due to differences in the biophysical origins of their signals and in the tissues to which they apply, there has been no direct integration of these techniques to date. We demonstrate that MRI signal variations and power spectra in a resting state are largely comparable between gray matter and white matter, that there are temporal correlations of fMRI signals that persist over long distances within distinct white matter structures, and that neighboring intervoxel correlations of low frequency resting state signals showed distinct anisotropy in many regions. These observations suggest that MRI signal variations from within white matter in a resting state may convey similar information as their corresponding fluctuations of MRI signals in gray matter. We thus derive a local spatio-temporal correlation tensor which captures directional variations of resting-state correlations and which reveals distinct structures in both white and gray matter. This novel concept is illustrated with in vivo experiments in a resting state, which demonstrate the potential of the technique for mapping the functional structure of neural networks and for direct integration of structure-function relations in the human brain.  相似文献   

3.

Background

Diffusion tensor imaging (DTI) study revealed reduced fractional anisotropy (FA) values in the corpus callosum (CC) in migraine patients without aura. Abnormalities in white matter integrity, particularly in the CC, may affect inter-hemispheric resting state functional connectivity (RSFC). Unfortunately, relatively little is known about the alterations in functional interactions between the cerebral hemispheres during resting state in migraine patients without aura, and even less about how the inter-hemispheric RSFC are affected by the abnormalities of the CC.

Methods and findings

Twenty-one migraine patients without aura and 21 healthy controls participated in this study, age-, sex-, and education-matched. Tract-based spatial statistics (TBSS) was employed to investigate the white matter alterations of the CC. Meanwhile, voxel-mirrored homotopic connectivity (VMHC) was used to compare the inter-hemispheric RSFC differences between the patients and controls. TBSS analysis revealed reduced FA values in the genu and the splenium of CC in patient group. VMHC analysis showed decreased inter-hemispheric RSFC of anterior cingulate cortex (ACC) in migraine patients without aura relative to that of the controls. Furthermore, in migraine patients without aura, the reduced FA values of the genu of CC correlated with the decreased inter-hemispheric RSFC of the ACC.

Conclusions

Our findings demonstrated that the migraine patients without aura showed reduced FA values of the genu of CC and decreased inter-hemispheric RSFC of the ACC. The correlation between the above structural and functional changes suggested that the reduced fractional anisotropy (FA) of CC modulates inter-hemispheric VMHC in migraine patients without aura. Our results demonstrated that the VMHC alterations of ACC can reflect the FA changes of the genu of CC in migraine patients without aura.  相似文献   

4.

Background

Strabismus is a disorder in which the eyes are misaligned. Persistent strabismus can lead to stereopsis impairment. The effect of strabismus on human brain is not unclear. The present study is to investigate whether the brain white structures of comitant exotropia patients are impaired using combined T1-weighted imaging and diffusion tensor imaging (DTI).

Principal Findings

Thirteen patients with comitant strabismus and twelve controls underwent magnetic resonance imaging (MRI) with acquisition of T1-weighted and diffusion tensor images. T1-weighted images were used to analyze the change in volume of white matter using optimized voxel-based morphology (VBM) and diffusion tensor images were used to detect the change in white matter fibers using voxel-based analysis of DTI in comitant extropia patients. VBM analysis showed that in adult strabismus, white matter volumes were smaller in the right middle occipital gyrus, right occipital lobe/cuneus, right supramarginal gyrus, right cingulate gyrus, right frontal lobe/sub-gyral, right inferior temporal gyrus, left parahippocampa gyrus, left cingulate gyrus, left occipital lobe/cuneus, left middle frontal gyrus, left inferior parietal lobule, and left postcentral gyrus, while no brain region with greater white matter volume was found. Voxel-based analysis of DTI showed lower fractional anisotropy (FA) values in the right middle occipital gyrus and right supramarginal gyrus in strabismus patients, while brain region with increased FA value was found in the right inferior frontal gyrus.

Conclusion

By combining VBM and voxel-based analysis of DTI results, the study suggests that the dorsal visual pathway was abnormal or impaired in patients with comitant exotropia.  相似文献   

5.
Z Wang  Z Zhang  Q Jiao  W Liao  G Chen  K Sun  L Shen  M Wang  K Li  Y Liu  G Lu 《PloS one》2012,7(7):e39701

Objective

Neuroimaging evidence suggested that the thalamic nuclei may play different roles in the progress of idiopathic generalized epilepsy (IGE). This study aimed to demonstrate the alterations in morphometry and functional connectivity in the thalamic nuclei in IGE.

Methods

Fifty-two patients with IGE characterized by generalized tonic-clonic seizures and 67 healthy controls were involved in the study. The three-dimensional high-resolution T1-weighted MRI data were acquired for voxel-based morphometry (VBM) analysis, and resting-state blood-oxygenation level functional MRI data were acquired for functional connectivity analysis. The thalamic nuclei of bilateral medial dorsal nucleus (MDN) and pulvinar, as detected with decreased gray matter volumes in patients with IGE through VBM analysis, were selected as seed regions for functional connectivity analysis.

Results

Different alteration patterns were found in functional connectivity of the thalamic nuclei with decreased gray matter volumes in IGE. Seeding at the MDN, decreased connectivity in the bilateral orbital frontal cortex, caudate nucleus, putamen and amygdala were found in the patients (P<0.05 with correction). However, seeding at the pulvinar, no significant alteration of functional connectivity was found in the patients (P<0.05 with correction).

Conclusions

Some specific impairment of thalamic nuclei in IGE was identified using morphological and functional connectivity MRI approaches. These findings may strongly support the different involvement of the thalamocortical networks in IGE.  相似文献   

6.

Background

Neuroimaging studies in late life depression have reported decreased structural integrity of white matter tracts in the prefrontal cortex. Functional studies have identified changes in functional connectivity among several key areas involved in mood regulation. Few studies have combined structural and functional imaging. In this study we sought to examine the relationship between the uncinate fasciculus, a key fronto-temporal tract and resting state functional connectivity between the ventral prefrontal cortex ((PFC) and limbic and striatal areas.

Methods

The sample consisted of 24 older patients remitted from unipolar major depression. Each participant had a magnetic resonance imaging brain scan using standardized protocols to obtain both diffusion tensor imaging and resting state functional connectivity data. Our statistical approach compared structural integrity of the uncinate fasciculus and functional connectivity data.

Results

We found positive correlations between left uncinate fasciculus (UF) fractional anisotropy (FA) and resting state functional connectivity (rsFC) between the left ventrolateral PFC and left amygdala and between the left ventrolateral PFC and the left hippocampus. In addition, we found a significant negative correlation between left ventromedial PFC-caudate rsFC and left UF FA. The right UF FA did not correlate with any of the seed region based connectivity.

Conclusions

These results support the notion that resting state functional connectivity reflects structural integrity, since the ventral PFC is structurally connected to temporal regions by the UF. Future studies should include larger samples of patients and healthy comparison subjects in which both resting state and task-based functional connectivity are examined.  相似文献   

7.
Many brain imaging studies have demonstrated reductions in gray and white matter volumes in alcoholism, with fewer investigators using diffusion tensor imaging (DTI) to examine the integrity of white matter pathways. Among various medical conditions, alcoholism and post-traumatic stress disorder (PTSD) are two comorbid diseases that have similar degenerative effects on the white matter integrity. Therefore, understanding and differentiating these effects would be very important in characterizing alcoholism and PTSD. Alcoholics are known to have neurocognitive deficits in decision-making, particularly in decisions related to emotionally-motivated behavior, while individuals with PTSD have deficits in emotional regulation and enhanced fear response. It is widely believed that these types of abnormalities in both alcoholism and PTSD are related to fronto-limbic dysfunction. In addition, previous studies have shown cortico-limbic fiber degradation through fiber tracking in alcoholism. DTI was used to measure white matter fractional anisotropy (FA), which provides information about tissue microstructure, possibly indicating white matter integrity. We quantitatively investigated the microstructure of white matter through whole brain DTI analysis in healthy volunteers (HV) and alcohol dependent subjects without PTSD (ALC) and with PTSD (ALC+PTSD). These data show significant differences in FA between alcoholics and non-alcoholic HVs, with no significant differences in FA between ALC and ALC+PTSD in any white matter structure. We performed a post-hoc region of interest analysis that allowed us to incorporate multiple covariates into the analysis and found similar results. HV had higher FA in several areas implicated in the reward circuit, emotion, and executive functioning, suggesting that there may be microstructural abnormalities in white matter pathways that contribute to neurocognitive and executive functioning deficits observed in alcoholics. Furthermore, our data do not reveal any differences between ALC and ALC+PTSD, suggesting that the effect of alcohol on white matter microstructure may be more significant than any effect caused by PTSD.  相似文献   

8.

Background and Purpose

Cognitive impairment is a well-described phenomenon in end-stage renal disease (ESRD) patients. However, its pathogenesis remains poorly understood. The primary focus of this study was to examine structural and functional brain deficits in ESRD patients.

Materials and Methods

Thirty ESRD patients on hemodialysis (without clinical neurological disease) and 30 age- and gender-matched control individuals (without renal or neurological problems) were recruited in a prospective, single-center study. High-resolution structural magnetic resonance imaging (MRI) and resting state functional MRI were performed on both groups to detect the subtle cerebral deficits in ESRD patients. Voxel-based morphometry was used to characterize gray matter deficits in ESRD patients. The impact of abnormal morphometry on the cerebral functional integrity was investigated by evaluating the alterations in resting state functional connectivity when brain regions with gray matter volume reduction were used as seed areas.

Results

A significant decrease in gray matter volume was observed in ESRD patients in the bilateral medial orbito-prefrontal cortices, bilateral dorsal lateral prefrontal cortices, and the left middle temporal cortex. When brain regions with gray matter volume reduction were used as seed areas, the integration was found to be significantly decreased in ESRD patients in the fronto-cerebellum circuits and within prefrontal circuits. In addition, significantly enhanced functional connectivity was found between the prefrontal cortex and the left temporal cortex and within the prefrontal circuits.

Conclusions

Our study revealed that both the structural and functional cerebral cortices were impaired in ESRD patients on routine hemodialysis.  相似文献   

9.
The aim of the study was to evaluate the value of assessing white matter integrity using diffusion tensor imaging (DTI) for classification of mild cognitive impairment (MCI) and prediction of cognitive impairments in comparison to brain atrophy measurements using structural MRI. Fifty-one patients with MCI and 66 cognitive normal controls (CN) underwent DTI and T1-weighted structural MRI. DTI measures included fractional anisotropy (FA) and radial diffusivity (DR) from 20 predetermined regions-of-interest (ROIs) in the commissural, limbic and association tracts, which are thought to be involved in Alzheimer''s disease; measures of regional gray matter (GM) volume included 21 ROIs in medial temporal lobe, parietal cortex, and subcortical regions. Significant group differences between MCI and CN were detected by each MRI modality: In particular, reduced FA was found in splenium, left isthmus cingulum and fornix; increased DR was found in splenium, left isthmus cingulum and bilateral uncinate fasciculi; reduced GM volume was found in bilateral hippocampi, left entorhinal cortex, right amygdala and bilateral thalamus; and thinner cortex was found in the left entorhinal cortex. Group classifications based on FA or DR was significant and better than classifications based on GM volume. Using either DR or FA together with GM volume improved classification accuracy. Furthermore, all three measures, FA, DR and GM volume were similarly accurate in predicting cognitive performance in MCI patients. Taken together, the results imply that DTI measures are as accurate as measures of GM volume in detecting brain alterations that are associated with cognitive impairment. Furthermore, a combination of DTI and structural MRI measurements improves classification accuracy.  相似文献   

10.
Objective: To investigate any correlation between BMI and brain gray matter volume, we analyzed 1,428 healthy Japanese subjects by applying volumetric analysis and voxel‐based morphometry (VBM) using brain magnetic resonance (MR) imaging, which enables a global analysis of brain structure without a priori identification of a region of interest. Methods and Procedures: We collected brain MR images from 690 men and 738 women, and their height, weight, and other clinical information. The collected images were automatically normalized into a common standard space for an objective assessment of neuroanatomical correlations in volumetric analysis and VBM with BMI. Results: Volumetric analysis revealed a significant negative correlation in men (P < 0.001, adjusting for age, lifetime alcohol intake, history of hypertension, and diabetes mellitus), although not in women, between BMI and the gray matter ratio, which represents the percentage of gray matter volume in the intracranial volume. VBM revealed that, in men, the regional gray matter volume of the bilateral medial temporal lobes, anterior lobe of the cerebellum, occipital lobe, frontal lobe, precuneus, and midbrain showed significant negative correlations with BMI, while those of the bilateral inferior frontal gyri, posterior lobe of the cerebellum, frontal lobes, temporal lobes, thalami, and caudate heads showed significant positive correlations with BMI. Discussion: Global loss and regional alterations in gray matter volume occur in obese male subjects, suggesting that male subjects with a high BMI are at greater risk for future declines in cognition or other brain functions.  相似文献   

11.
Attempts to explicate the neural abnormalities behind autism spectrum disorders frequently revealed impaired brain connectivity, yet our knowledge is limited about the alterations linked with autistic traits in the non-clinical population. In our study, we aimed at exploring the neural correlates of dimensional autistic traits using a dual approach of diffusion tensor imaging (DTI) and graph theoretical analysis of resting state functional MRI data. Subjects were sampled from a public neuroimaging dataset of healthy volunteers. Inclusion criteria were adult age (age: 18–65), availability of DTI and resting state functional acquisitions and psychological evaluation including the Social Responsiveness Scale (SRS) and Autistic Spectrum Screening Questionnaire (ASSQ). The final subject cohort consisted of 127 neurotypicals. Global brain network structure was described by graph theoretical parameters: global and average local efficiency. Regional topology was characterized by degree and efficiency. We provided measurements for diffusion anisotropy. The association between autistic traits and the neuroimaging findings was studied using a general linear model analysis, controlling for the effects of age, gender and IQ profile. Significant negative correlation was found between the degree and efficiency of the right posterior cingulate cortex and autistic traits, measured by the combination of ASSQ and SRS scores. Autistic phenotype was associated with the decrease of whole-brain local efficiency. Reduction of diffusion anisotropy was found bilaterally in the temporal fusiform and parahippocampal gyri. Numerous models describe the autistic brain connectome to be dominated by reduced long-range connections and excessive short-range fibers. Our finding of decreased efficiency supports this hypothesis although the only prominent effect was seen in the posterior limbic lobe, which is known to act as a connector hub. The neural correlates of the autistic trait in neurotypicals showed only limited similarities to the reported findings in clinical populations with low functioning autism.  相似文献   

12.

Background

Little is known about connectivity within the default mode network (DMN) in heroin-dependent individuals (HDIs). In the current study, diffusion-tensor imaging (DTI) and resting-state functional MRI (rs-fMRI) were combined to investigate both structural and functional connectivity within the DMN in HDIs.

Methods

Fourteen HDIs and 14 controls participated in the study. Structural (path length, tracts count, (fractional anisotropy) FA and (mean diffusivity) MD derived from DTI tractography)and functional (temporal correlation coefficient derived from rs-fMRI) DMN connectivity changes were examined in HDIs. Pearson correlation analysis was performed to compare the structural/functional indices and duration of heroin use/Iowa gambling task(IGT) performance in HDIs.

Results

HDIs had lower FA and higher MD in the tract connecting the posterior cingulate cortex/precuneus (PCC/PCUN) to right parahippocampal gyrus (PHG), compared to the controls. HDIs also had decreased FA and track count in the tract connecting the PCC/PCUN and medial prefrontal cortex (MPFC), as well as decreased functional connectivity between the PCC/PCUN and bilateral PHG and MPFC, compared to controls. FA values for the tract connecting PCC/PCUN to the right PHG and connecting PCC/PCUN to the MPFC were negatively correlated to the duration of heroin use. The temporal correlation coefficients between the PCC/PCUN and the MPFC, and the FA values for the tract connecting the PCC/PCUN to the MPFC were positively correlated to IGT performance in HDIs.

Conclusions

Structural and functional connectivity within the DMN are both disturbed in HDIs. This disturbance progresses as duration of heroin use increases and is related to deficits in decision making in HDIs.  相似文献   

13.

Background

In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs) there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI) and MR diffusion tensor imaging (DTI) studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI) and microstructural degeneration (inferred by DTI).

Methodology/Principal Findings

For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA) of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures.

Conclusions/Significance

Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients.  相似文献   

14.
Liao Y  Tang J  Deng Q  Deng Y  Luo T  Wang X  Chen H  Liu T  Chen X  Brody AL  Hao W 《PloS one》2011,6(11):e26460

Background

Cigarette smoking continues to be the leading cause of preventable morbidity and mortality in China and other countries. Previous studies have demonstrated gray matter loss in chronic smokers. However, only a few studies assessed the changes of white matter integrity in this group. Based on those previous reports of alterations in white matter integrity in smokers, the aim of this study was to examine the alteration of white matter integrity in a large, well-matched sample of chronic smokers and non-smokers.

Methodology/Principal Findings

Using in vivo diffusion tensor imaging (DTI) to measure the differences of whole-brain white matter integrity between 44 chronic smoking subjects (mean age, 28.0±5.6 years) and 44 healthy age- and sex-matched comparison non-smoking volunteers (mean age, 26.3±5.8 years). DTI was performed on a 3-Tesla Siemens scanner (Allegra; Siemens Medical System). The data revealed that smokers had higher fractional anisotropy (FA) than healthy non-smokers in almost symmetrically bilateral fronto-parietal tracts consisting of a major white matter pathway, the superior longitudinal fasciculus (SLF).

Conclusion/Significance

We found the almost symmetrically bilateral fronto-parietal whiter matter changes in a relatively large sample of chronic smokers. These findings support the hypothesis that chronic cigarette smoking involves alterations of bilateral fronto-parietal connectivity.  相似文献   

15.
Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM). To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA). Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.  相似文献   

16.
The neural correlates of developmental dyslexia have been investigated intensively over the last two decades and reliable evidence for a dysfunction of left-hemispheric reading systems in dyslexic readers has been found in functional neuroimaging studies. In addition, structural imaging studies using voxel-based morphometry (VBM) demonstrated grey matter reductions in dyslexics in several brain regions. To objectively assess the consistency of these findings, we performed activation likelihood estimation (ALE) meta-analysis on nine published VBM studies reporting 62 foci of grey matter reduction in dyslexic readers. We found six significant clusters of convergence in bilateral temporo-parietal and left occipito-temporal cortical regions and in the cerebellum bilaterally. To identify possible overlaps between structural and functional deviations in dyslexic readers, we conducted additional ALE meta-analyses of imaging studies reporting functional underactivations (125 foci from 24 studies) or overactivations (95 foci from 11 studies ) in dyslexics. Subsequent conjunction analyses revealed overlaps between the results of the VBM meta-analysis and the meta-analysis of functional underactivations in the fusiform and supramarginal gyri of the left hemisphere. An overlap between VBM results and the meta-analysis of functional overactivations was found in the left cerebellum. The results of our study provide evidence for consistent grey matter variations bilaterally in the dyslexic brain and substantial overlap of these structural variations with functional abnormalities in left hemispheric regions.  相似文献   

17.

Background

Cerebrotendinous xanthomatosis (CTX) is a rare genetic disorder. Recent studies show that brain damage in CTX patients extends beyond the abnormalities observed on conventional magnetic resonance imaging (MRI). We studied the MRI and 99 mTc-ethyl cysteinate dimer single photon emission computed tomography (SPECT) findings of CTX patients and made a correlation with the neuropsychological presentations.

Methods

Diffusion tensor imaging (DTI) and 3D T1-weighted images of five CTX patients were compared with 15 age-matched controls. Voxel-based morphometry (VBM) was use to delineate gray matter (GM) and white matter (WM) volume loss. Fractional anisotropy (FA), mean diffusivity (MD), and eigenvalues derived from DTI were used to detect WM changes and correlate with neuropsychological results. SPECT functional studies were used to correlate with GM changes.

Results

Cognitive results showed that aside from moderate mental retardation, the patient group performed worse in all cognitive domains. Despite the extensive GM atrophy pattern, the cerebellum, peri-Sylvian regions and parietal-occipital regions were correlated with SPECT results. WM atrophy located in the peri-dentate and left cerebral peduncle areas corresponded with changes in diffusion measures, while axial and radial diffusivity suggested both demyelinating and axonal changes. Changes in FA and MD were preceded by VBM in the corpus callosum and corona radiata. Cognitive results correlated with FA changes.

Conclusion

In CTX, GM atrophy affected the perfusion patterns. Changes in WM included atrophy, and axonal changes with demyelination. Disconnection of major fiber tracts among different cortical regions may contribute to cognitive impairment.
  相似文献   

18.
The use of modern neuroimaging methods to characterize the complex anatomy of brain development at different stages reveals an enormous wealth of information in understanding this highly ordered process and provides clues to detect neurological and neurobehavioral disorders that have their origin in early structural and functional cerebral maturation. Non-invasive diffusion tensor magnetic resonance imaging (DTI) is able to distinguish cerebral microscopic structures, especially in the white matter regions. However, DTI is unable to resolve the complicated neural structure, i.e., the fiber crossing that is frequently observed during the maturation process. To overcome this limitation, several methods have been proposed. One such method, generalized q-sampling imaging (GQI), can be applied to a variety of datasets, including the single shell, multi-shell or grid sampling schemes that are believed to be able to resolve the complicated crossing fibers. Rabbits have been widely used for neurodevelopment research because they exhibit human-like timing of perinatal brain white matter maturation. Here, we present a longitudinal study using both DTI and GQI to demonstrate the changes in cerebral maturation of in vivo developing rabbit brains over a period of 40 weeks. Fractional anisotropy (FA) of DTI and generalized fractional anisotropy (GFA) of GQI indices demonstrated that the white matter anisotropy increased with age, with GFA exhibiting an increase in the hippocampus as well. Normalized quantitative anisotropy (NQA) of GQI also revealed an increase in the hippocampus, allowing us to observe the changes in gray matter as well. Regional and whole brain DTI tractography also demonstrated refinement in fiber pathway architecture with maturation. We concluded that DTI and GQI results were able to characterize the white matter anisotropy changes, whereas GQI provided further information about the gray matter hippocampus area. This developing rabbit brain DTI and GQI database could also be used for educational purposes and neuroscience investigations.  相似文献   

19.
Tuch DS  Reese TG  Wiegell MR  Wedeen VJ 《Neuron》2003,40(5):885-895
While functional brain imaging methods can locate the cortical regions subserving particular cognitive functions, the connectivity between the functional areas of the human brain remains poorly understood. Recently, investigators have proposed a method to image neural connectivity noninvasively using a magnetic resonance imaging method called diffusion tensor imaging (DTI). DTI measures the molecular diffusion of water along neural pathways. Accurate reconstruction of neural connectivity patterns from DTI has been hindered, however, by the inability of DTI to resolve more than a single axon direction within each imaging voxel. Here, we present a novel magnetic resonance imaging technique that can resolve multiple axon directions within a single voxel. The technique, called q-ball imaging, can resolve intravoxel white matter fiber crossing as well as white matter insertions into cortex. The ability of q-ball imaging to resolve complex intravoxel fiber architecture eliminates a key obstacle to mapping neural connectivity in the human brain noninvasively.  相似文献   

20.
The medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA), which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%–34% of the variance in IQ, in comparison to 11%–16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号