首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
3.
4.
The silkworm Bombyx mori represents an established in vivo system for the production of recombinant proteins. Baculoviruses have been extensively investigated and optimised for the expression of high protein levels inside the haemolymph of larvae and pupae of this lepidopteran insect. Current technology includes deletion of genes responsible for the activity of virus-borne proteases, which in wild-type viruses, cause liquefaction of the host insect and enhance horizontal transmission of newly synthesised virus particles. Besides the haemolymph, the silk gland of B. mori provides an additional expression system for recombinant proteins. In this paper, we investigated how silk gland can be efficiently infected by a Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV). We demonstrated that the viral chitinase and the cysteine protease cathepsin are necessary to permit viral entry into the silk gland cells of intrahaemocoelically infected B. mori larvae. Moreover, for the first time, we showed AcMNPV crossing the basal lamina of silk glands in B. mori larvae, and we assessed a new path of infection of silk gland cells that can be exploited for protein production.  相似文献   

5.
Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown.In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient.B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk formation may lead to a more efficient production of artificial or regenerated silkworm silk fibers.  相似文献   

6.
The amount of newly synthesized and accumulated fibroin messenger RNA has been measured quantitatively at various stages of posterior silk gland development in Bombyx mori. The two-step method involves fractionation on a Bio-Gel column which excludes the large mRNA, followed by RNAase T1 digestion, and fractionation of the oligonucleotides on DEAE-Sephadex. Larvae in the feeding stages of the third and fourth instar synthesize and accumulate fibroin mRNA to about 2% of cellular RNA; this corresponds to 0.2 and 2 μg per pair of posterior glands in the third and fourth instars, respectively. More than 70% of this mRNA is degraded in vivo during the third and fourth moulting stages. Fibroin mRNA synthesis resumes again within the first 24 hours of the fifth instar; the mRNA accumulates and predominates over other DNA-like RNAs as the stage proceeds until finally it comprises about 3.5% of cellular RNA in a mature larva (170 μg per pair of posterior glands). These results indicate that more than 99% of the fibroin mRNA detected in the fifth instar is synthesized during this stage.Four spontaneous mutants of B. mori which synthesize very low levels of fibroin have been analyzed for their RNA content in the middle fifth instar. The total cellular RNA of the posterior gland is reduced to 4 to 7% of normal. Fibroin mRNA is more severely reduced to 1% of normal. In three heterozygotes, which have mutant phenotypes with respect to fibroin production, only slight increases of total cellular RNA and fibroin mRNA were observed. Thus, the primary biochemical lesion in these mutants is still unknown.The presumed ancestor to B. mori, the wild silkworm B. mandarina, was also analyzed for its fibroin mRNA. The mRNA isolated from fifth instar larvae of B. mandarina is indistinguishable from that of B. mori with respect to its nucleotide sequence, molecular weight and fraction of total cellular RNA.  相似文献   

7.
8.
9.
《Journal of Asia》2022,25(1):101835
The domesticated silkworm Bombyx mori is an economically important insect that produces large quantities of silk during its 5th instar larval stage. Polyamines are important regulators of growth and have been shown to affect silk production, however their role in larval development is not completely understood. L-ornithine decarboxylase (ODC), a key regulatory enzyme in the polyamine biosynthetic pathway catalyzes the conversion of ornithine to putrescine, which is further broken down to spermidine and spermine. In this study, we set out to understand the role of ODC on the growth and development of silkworm larvae. We fed 5th instar larvae with α-difluoromethylornithine (DFMO), an ODC inhibitor and studied its impact on larval silk glands. Feeding DFMO did not alter the expression of L-ODC but led to a significant reduction in putrescine and spermidine levels. Furthermore, reduced cellular levels of polyamine led to increased oxidative stress and decreased cell viability. Subsequently, this resulted in several developmental defects at the pupal and moth stages. These findings highlight the importance of ODC in the growth and development of B. mori larvae.  相似文献   

10.
Silk glands of the mulberry silkworm Bombyx mori are long and paired structures originating from the labial region and are anatomically and physiologically divided into three major compartments, the anterior, middle and posterior silk glands. The silk gland morphogenesis is complete by 8 days post egg laying. Extensive growth of silk glands during the larval stages is due to increase in tissue mass and not cell number. The cells in a completely formed silk gland pursue an endoreplicative cell cycle, and the genome undergoes multiple rounds of replication without mitosis or nuclear division. The expression patterns of cyclin B (mitotic cyclin) and cyclin E (G1 cyclin, essential for G1/S transition in both mitotic and endoreplicative cell cycles) in the course of silk gland development revealed that mitotic cell divisions take place only in the apex of the growing silk gland. However, the persistence of another mitotic focus in the middle silk gland even when the growing apex has moved well past this zone suggested the continued operation of mitosis for a while in this restricted region. The lack of cyclin B expression and abundance of cyclin E in the rest of the areas confirmed an alternation of the G1 and S phases of the cell cycle without an intervening mitotic phase. No expression of cyclin B was noticed anywhere in the silk glands after stage 25 of embryogenesis, indicating a complete switch over to the endomitotic mode of the cell cycle. The onset of expression of various genes encoding different silk proteins correlated with the onset of endomitotic events.Edited by D. Tautz  相似文献   

11.
The prothoracicotropic hormone (PTTH) stimulates ecdysteroidogenesis by prothoracic gland in larval insects. Previous studies showed that Ca2+, cAMP, extracellular signal-regulated kinase (ERK), and tyrosine kinase are involved in PTTH-stimulated ecdysteroidogenesis by the prothoracic glands of both Bombyx mori and Manduca sexta. In the present study, the involvement of phosphoinositide 3-kinase (PI3K)/Akt signaling in PTTH-stimulated ecdysteroidogenesis by B. mori prothoracic glands was further investigated. The results showed that PTTH-stimulated ecdysteroidogenesis was partially blocked by LY294002 and wortmannin, indicating that PI3K is involved in PTTH-stimulated ecdysteroidogenesis. Akt phosphorylation in the prothoracic glands appeared to be moderately stimulated by PTTH in vitro. PTTH-stimulated Akt phosphorylation was inhibited by LY294002. An in vivo PTTH injection into day 6 last instar larvae also increased Akt phosphorylation of the prothoracic glands. In addition, PTTH-stimulated ERK phosphorylation of the prothoracic glands was not inhibited by either LY294002 or wortmannin, indicating that PI3K is not involved in PTTH-stimulated ERK signaling. A23187 and thapsigargin, which stimulated B. mori prothoracic gland ERK phosphorylation and ecdysteroidogenesis, could not activate Akt phosphorylation. PTTH-stimulated ecdysteroidogenesis was not further activated by insulin, indicating the absence of an additive action of insulin and PTTH on the prothoracic glands. The present study, together with the previous demonstration that insulin stimulates B. mori ecdysteroidogenesis through PI3K/Akt signaling, suggests that crosstalk exists in B. mori prothoracic glands between insulin and PTTH signaling, which may play a critical role in precisely regulated ecdysteroidogenesis during development.  相似文献   

12.
The fine structures of the whole bodies and the posterior silk glands of Bombyx mori during metamorphosis from larvae to pupae in the cocoon were preserved virtually without damage when frozen sections were prepared using an adhesive plastic film. We used frozen sections for histochemical and enzyme histochemistry to characterize the metamorphosis of the posterior silk glands. Frozen sections were stained with DAPI to observe nuclear changes, examined using the TUNEL method to detect DNA fragments, and investigated using in situ hybridization to detect B. mori caspase expression. Both DNA fragments and expression of B. mori caspase increased with progressing metamorphosis. The degeneration of the posterior silk gland during metamorphosis appears to be an apoptotic event.  相似文献   

13.
The carotenoid uptake by the silk gland of the silkworm (Bombyx mori), which occurs only during the middle to late period of the last (fifth) instar in the natural condition, was studied in relation to the hormonal controls. During certain stages of the fourth and last instars, the corpus allatum hormone (JH) was found to inhibit the activation of the absorbing function of the silk gland. The absorbing activity was inactivated, if the activated silk gland was implanted into larva at the late stage of the fourth instar in the presence of the moulting hormone (MH). As more ponasterone-A (ecdysone-analogue) was injected into decapitated larvae, the pigmentation of the silk gland was increased; but injection of a high titre inhibited its activity. It seems that, through serial transplantations, the silk gland inactivated experimentally at the late stage of the fourth instar is reactivated in the presence of MH during the middle to late period of the last instar. The results indicate that MH and JH at each stage control the activity of the carotenoid uptake.  相似文献   

14.
Radioactive iodinated silk fibroin messenger RNA and ribosomal RNA have been used as probes to localize their genes in tissue sections of Bombyx mori by in situ hybridization. From filter hybridization experiments it is inferred that the majority of the grains produced by in situ hybridization with fibroin mRNA represents specific hybridization to fibroin genes. Sections of the posterior silk gland where silk is synthesized have been compared with those of the middle gland which does not synthesize fibroin. Glands have been analyzed from the second through the fifth (last) larval instar during feeding and moulting periods. During later stages when the gland cells increase their DNA content by polyploidization, serial sections were required to follow the distribution of grains through entire nuclei. At all stages, both ribosomal DNA and fibroin genes are distributed randomly throughout the nuclei without a preferred relationship to any nuclear structure.  相似文献   

15.
16.
17.
Fenoxycarb, O‐ethyl N‐(2‐(4‐phenoxyphenoxy)‐ethyl) carbamate has been shown to be one of the most potent juvenile hormone analogues against a variety of insect species. In the present study, topical application of fenoxycarb to fifth‐instar larvae of the silkworm Bombyx mori (Lepidoptera: Bombycidae) was performed immediately after the fourth ecdysis (on day 0), day 3 and day 6 of the instar and then its effects on the anterior silk glands (ASG) and ecdysone receptor B1 (EcR‐B1) protein were investigated during larval pupal development. Fenoxycarb application increased the instar length and prevented metamorphic events, depending on the application time. The ASGs of B. mori undergo programmed cell death during the larval–pupal metamorphosis and an insect steroid, 20‐hydroxyecdysone (20E), triggers this cell death. The exact mechanism by which 20E and juvenile hormone regulates programmed cell death in insect tissues is poorly understood. To gain insights into how juvenile hormone regulates metamorphic events like programmed cell death in the anterior silk glands, we analyzed the progression of programmed cell death with morphological observations and biochemical experiments like acid phosphatase activity and DNA electrophoresis. Then we examined the EcR‐B1 protein levels and their relationships with programmed cell death. Our results indicated that fenoxycarb modulates programmed cell death of the anterior silk glands and EcR‐B1 protein level, depending on the application time. Fenoxycarb may exhibit its effects in at least two different ways: (i) acting on prothoracic gland secretory activity; and/or (ii) regulation of EcR‐B1 expression in the anterior silk glands for programmed cell death process.  相似文献   

18.
19.
20.
Formation of yellow-red color cocoons in the silkworm, Bombyx mori, occurs as the result of the selective delivery of carotenoids from the midgut to the silk gland via the hemolymph. This process of pigment transport is thought to be mediated by specific cellular carotenoids carrier proteins. Previous studies indicated that two proteins, Cameo2 and CBP, are associated with the selective transport of lutein from the midgut into the silk gland in Bombyx mori. However, the exact roles of Cameo2 and CBP during the uptake and transport of carotenoids are still unknown. In this study, we investigated the respective contributions of these two proteins to lutein and β-carotene transport in Bombyx mori as well as commercial cell-line. We found that tissues, expressed both Cameo2 and CBP, accumulate lutein. Cells, co-expressed Cameo2 and CBP, absorb 2 fold more lutein (P<0.01) than any other transfected cells, and the rate of cellular uptake of lutein was concentration-dependent and reached saturation. From immunofluorescence staining, confocal microscopy observation and western blot analysis, Cameo2 was localized at the membrane and CBP was expressed in the cytosol. What’s more, bimolecular fluorescence complementation analysis showed that these two proteins directly interacted at cellular level. Therefore, Cameo2 and CBP are necessarily expressed in midguts and silk glands for lutein uptake in Bombyx mori. Cameo2 and CBP, as the membrane protein and the cytosol protein, respectively, have the combined effect to facilitate the cellular uptake of lutein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号