首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Physical conditions and biotic interactions are believed to be the determinants of plant zonation in saltmarshes. However, in rapidly developing estuarine marshes, succession is regarded as the primary process responsible for plant zonation and it is controlled mainly by environmental factors. Salinity and inundation are two important factors responsible for the distribution pattern of dominant plants in coastal saltmarshes. Here we conducted a common garden experiment as well as a field transplanting to examine the responses of four dominant saltmarsh plants (native Scirpus mariqueter, Scirpus triqueter and Phragmites australis, and exotic Spartina alterniflora) in the Yangtze River estuary to environmental gradients, which may help us understand their current and potential zonation. The results showed that Scirpus adapted to freshwater and less inundated habitats, Phragmites performed well in brackish or freshwater environments with less inundation, and Spartina tolerated the highest salinity and deepest inundation. In the harshest environments (the highest salinity and water level), only Spartina performed well. In the mild environments, however, there were only minor differences in the performances among the four species. The potential ranges of Phragmites and Spartina were predicted to be larger than their current ones, and their lower boundaries might be set by tidal scour rather than edaphic factors. With the saltmarsh succession, invasive Spartina in the Yangtze River estuary might ultimately replace Scirpus, and alter the zonal patterns of native saltmarsh plants, which will lead to severe ecosystem consequences. Thus, proper management measures (e.g., repeated mowing) need to be implemented to control this invasive exotic plant, and restore the vulnerable ecosystems invaded by Spartina in the Yangtze River estuary.  相似文献   

2.
何彦龙  李秀珍  马志刚  孙永光  贾悦 《生态学报》2010,30(18):4919-4927
对东滩湿地不同植被带与土壤环境因子的关系进行了探讨,分析植被成带性分布与土壤含水量、土壤盐度、土壤温度之间的关系,研究表明:(1)光滩(TF)、海三棱藨草(Sm)、互花米草带(Sa)土壤含水量差异显著(P0.05),随着土壤含水量的显著变化,海三棱藨草和互花米草种群分布呈现明显带状分布,土壤含水量对植被带的分布起到一定的平衡作用,在土壤经常性淹水下,互花米草种群的海向性拓殖受到一定抑制。(2)光滩带、海三棱藨草带、互花米草带之间的土壤盐分(NaCl)差异极显著(P0.001),从海向陆依次为:NaCl光滩带NaCl海三棱带NaCl互花米草带,NaCl含量增加土壤含水量相对减小,土壤盐度和含水量的差异极大影响了海三棱藨草和互花米草植被带的分布模式,从而进一步制约了其演替进程。不同植被带间温度差异显著,总体趋势为互花米草带最高而潮滩带最低,并且互花米草带土壤温度显著高于其它各带,小尺度空间上植被对环境因子的响应明显。(3)相对于7月份而言,5月份各带内土壤含水量显著较高,但植被带间没有显著性变化。光滩最高,依次为海三棱带和互花米草带。然而,7月份土壤盐度和温度显著大于5月份,互花米草带最高,依次为海三棱和光滩带。  相似文献   

3.
There is little published information about coastal salt marshes in south-western Australia, which are prominent in estuaries but absent from the high energy coastline. The zonation of the marshes of the Blackwood estuary resemble those in other parts of the world, in that Sarcocornia marsh occurs near the mouth, followed by rush marsh, with sedges further upstream, suggesting that salinity is a prime determining factor. Spartina and Phragmites are absent. The most exensive marsh is the Juncus kraussii rush community which is invaded by the paperbark tree, Melaleuca cuticularis. The sedge Baumea juncea forms a marsh community on the shores of the lower tidal river and a progression of species occurs with distance along the tidal river. A number of dynamic processes observed in these marshes are described and related to observations elsewhere  相似文献   

4.
《农业工程》2021,41(5):402-409
Coastal wetlands reclamation is facing the problem of salinization. Along with the alternation of ecosystem status, studying the following effect on soil properties becomes emergency. Here we reported the pH, salinity and elemental content (mainly metals) variation affected by the vegetation situations, water sources and geographic positions. The results showed that vegetation could lead the pH and salinity of seawater zones closer to that of freshwater zones in both spatial and time scales. Spartina alterniflora (SA) was the most efficient species among the investigated plants, causing decreases of 0.15–0.69 in pH and 2.250–3.821 in salinity. This result might be caused by the absorption of Ca and K from salt marshes by SA and Suaeda salsa (SS), due to the fact that the component content of calcium (all reduced to approximate one-third) and potassium (reduced in some samples) both decreased. Meanwhile, vegetation could improve soil in seawater zones in Fe content with no extra negative influences in elemental analysis. Thus, ecological engineered vegetation indicated great potential in alternating coastal salt marshes to favorable wetlands or farmlands with almost primitive ecosystem. The results might be significant for ecological engineering and agricultural management in future.  相似文献   

5.
Salt Marsh Restoration in Connecticut: 20 Years of Science and Management   总被引:4,自引:0,他引:4  
In 1980 the State of Connecticut began a tidal marsh restoration program targeting systems degraded by tidal restrictions and impoundments. Such marshes become dominated by common reed grass (Phragmites australis) and cattail (Typha angustifolia and T. latifolia), with little ecological connection to Long Island Sound. The management and scientific hypothesis was that returning tidal action, reconnecting marshes to Long Island Sound, would set these systems on a recovery trajectory. Specific restoration targets (i.e., pre‐disturbance conditions or particular reference marshes) were considered unrealistic. However, it was expected that with time restored tides would return ecological functions and attributes characteristic of fully functioning tidal salt marshes. Here we report results of this program at nine separate sites within six marsh systems along 110 km of Long Island Sound shoreline, with restoration times of 5 to 21 years. Biotic parameters assessed include vegetation, macroinvertebrates, and use by fish and birds. Abiotic factors studied were soil salinity, elevation and tidal flooding, and soil water table depth. Sites fell into two categories of vegetation recovery: slow, ca. 0.5%, or fast, more than 5% of total area per year. Although total cover and frequency of salt marsh angiosperms was positively related to soil salinity, and reed grass stand parameters negatively so, fast versus slow recovery rates could not be attributed to salinity. Instead, rates appear to reflect differences in tidal flooding. Rapid recovery was characterized by lower elevations, greater hydroperiods, and higher soil water tables. Recovery of other biotic attributes and functions does not necessarily parallel those for vegetation. At the longest studied system (rapid vegetation recovery) the high marsh snail Melampus bidentatus took two decades to reach densities comparable with a nearby reference marsh, whereas the amphipod Orchestia grillus was well established on a slow‐recovery marsh, reed grass dominated after 9 years. Typical fish species assemblages were found in restoration site creeks and ditches within 5 years. Gut contents of fish in ditches and on the high marsh suggest that use of restored marsh as foraging areas may require up to 15 years to reach equivalence with reference sites. Bird species that specialize in salt marshes require appropriate vegetation; on the oldest restoration site, breeding populations comparable with reference marshland had become established after 15 years. Use of restoration sites by birds considered marsh generalists was initially high and was still nearly twice that of reference areas even after 20 years. Herons, egrets, and migratory shorebirds used restoration areas extensively. These results support our prediction that returning tides will set degraded marshes on trajectories that can bring essentially full restoration of ecological functions. This can occur within two decades, although reduced tidal action can delay restoration of some functions. With this success, Connecticut's Department of Environmental Protection established a dedicated Wetland Restoration Unit. As of 1999 tides have been restored at 57 separate sites along the Connecticut coast.  相似文献   

6.
Ecological functions of bioturbation in ecosystems have received increasing attention over the recent decades, and crab burrowing has been considered as one of the major bioturbations affecting the physical and chemical processes in salt marshes. This study assessed the integrated effects of crab excavating and burrow mimic trapping on sediment turnover and vertical C and N distributions in a Chinese salt marsh in the Yangtze River estuary. Crab burrowing increased soil water content and the turnover of carbon and nitrogen and decreased bulk soil density. Vertical movement of materials, nutrient cycling and reuse driven by crab burrowing might be obstructed by vegetation (Phragmites australis and Spartina alterniflora communities). The amount of soil excavated by crab burrowing was higher than that deposited into burrow mimics. In Phragmites marshes, Spartina marshes and unvegetated mudflats, net transport of soil to the marsh surface was 171.73, 109.54, and 374.95 g m−2 d−1, respectively; and the corresponding estimated soil turnover time was 2.89, 4.07 and 1.83 years, respectively. Crab burrowing in salt marshes can mix surface and deeper soil over a period of years, accelerating litter decomposition and promoting the efficient reuse of nutrients by plants. Therefore, bioturbation affects soil physical processes and functioning of ecosystems, and needs to be addressed in ecosystem management.  相似文献   

7.
Thirty-four vegetation clusters identified in the present study, after the application of TWINSPAN and DCA multivariate techniques, were assigned into 8 vegetation types, each of definite vegetation and habitat characters. The suggested vegetation types are well segregated along the DCA axis one which reflects soil moisture, salinity (as indicated by EC values), fertility (as indicated by the organic matter and nitrogen contents) and species diversity gradients. In general, soil moisture and soil fertility increase and species diversity decreases with the following sequence of vegetation types:Echinops spinosissimus-Ononis serrata on inland sand dunes,Pancratium maritimum on coastal sand dunes,Halocnemum strobilaceum-Salsola kali in saline sand deposits,Atriplex halimus-Chenopodium murale along the terraces and slopes of drains,Arthrocnemum glaucum-Tamarix nilotica in salt marshes,Chenopodium murale along the slopes of drains,Phragmites australis along the littoral zones of drains, andLemna gibba-Potamogeton crispus in the water zone. This sequence reflects also a gradient of human interference, starting with the vegetation of the less disturbed habitats (sand dunes and saline sand deposits) and ending with the fully man-made habitats (drain zones).  相似文献   

8.
Whether and how the roles of environmental factors in producing vegetation patterns in coastal marshes vary with spatial scale is not well understood. We investigated the relationship between plant communities and edaphic factors in the Yangtze estuary at three spatial scales. Plant communities and edaphic factors were quantified at high and low tidal levels in both freshwater and salt marshes. Canonical correspondence analyses were conducted to examine the relationship between plant communities and edaphic factors at the landscape scale (freshwater vs. salt marsh), the zonation scale (high vs. low tidal level) and the patch scale (dominant vs. other species). Soil salinity, moisture content, pH, bulk density, and organic carbon could well explain segregations of plants at the landscape and zonation scales. However, the same factors exhibited only very weak relationships to plant communities at the patch scale. These results suggest that plant communities in the Yangtze estuary are segregated at different spatial scales by different environmental factors. As spatial scale is often not explicitly addressed investigating community assembly rules, our study underscores the importance of scaling for an improved understanding of community organization in coastal wetlands.  相似文献   

9.
滨海湿地生态修复已成为阻止海岸带生态系统退化、保护生物多样性以及提供生态服务的关键措施。以长江口原生盐沼植物海三棱藨草(Scirpus mariqueter)为研究对象,选取崇明东滩新生滩涂湿地为研究区域,通过沿潮滩高程梯度的海三棱藨草植株斑块的移植实验,探究胁迫梯度假说和互惠理论(即种内的正相互作用)对长江口海三棱藨草种群恢复的指导意义。研究结果显示:(1)在一定的胁迫梯度范围内(潮滩高程2.0 m以上),增大种植斑块可以促进海三棱藨草的种内正相互作用,显著提高种植斑块的存活率和植株密度(P0.05);(2)潮滩水文动力沉积条件与潮滩高程梯度密切相关(P0.05),水文动力沉积作用对海三棱藨草定居和生长的胁迫随高程梯度下降而增强。潮滩高程2.0 m以下处强烈的水文动力条件干扰限制了生物-物理因素的正反馈作用。滨海湿地盐沼植被修复工作的成功率可以通过改进种植方式,增强种内的正相互作用得到极大的提高。研究可为开展大规模滨海湿地盐沼植被修复工程和提高生态修复效率提供科学依据和技术支持。  相似文献   

10.
Whether plant invasion increases ecosystem carbon (C) stocks is controversial largely due to the lack of knowledge about differences in ecophysiological properties between invasive and native species. We conducted a field experiment in which we measured ecophysiological properties to explore the response of the ecosystem C stocks to the invasion of Spartina alterniflora (Spartina) in wetlands dominated by native Scirpus mariqueter (Scirpus) and Phragmites australis (Phragmites) in the Yangtze Estuary, China. We measured growing season length, leaf area index (LAI), net photosynthetic rate (Pn), root biomass, net primary production (NPP), litter quality and litter decomposition, plant and soil C and nitrogen (N) stocks in ecosystems dominated by the three species. Our results showed that Spartina had a longer growing season, higher LAI, higher Pn, and greater root biomass than Scirpus and Phragmites. Net primary production (NPP) was 2.16 kg C m−2 y−1 in Spartina ecosystems, which was, on average, 1.44 and 0.47 kg C m−2 y−1 greater than that in Scirpus and Phragmites ecosystems, respectively. The litter decomposition rate, particularly the belowground decomposition rate, was lower for Spartina than Scirpus and Phragmites due to the lower litter quality of Spartina. The ecosystem C stock (20.94 kg m−2) for Spartina was greater than that for Scirpus (17.07 kg m−2), Phragmites (19.51 kg m−2) and the mudflats (15.12 kg m−2). Additionally, Spartina ecosystems had a significantly greater N stock (698.8 g m−2) than Scirpus (597.1 g m−2), Phragmites ecosystems (578.2 g m−2) and the mudflats (375.1 g m−2). Our results suggest that Spartina invasion altered ecophysiological processes, resulted in changes in NPP and litter decomposition, and ultimately led to enhanced ecosystem C and N stocks in the invaded ecosystems in comparison to the ecosystems with native species.  相似文献   

11.
We investigated dynamics and spatial distribution of Scirpus mariqueter and Spartina alterniflora seed banks at Chongming Dongtan in the Yangtze River estuary, China. Five sites along an elevational gradient were chosen, one in each of the main zones (mudflat, Scirpus monoculture, Scirpus–Spartina mixture, Spartina monoculture and Spartina–Phragmites mixture). Three surveys were performed just after seed rain, before germination and after germination, respectively. During the period of November 2005 to May 2006, soil seed density of Scirpus mariqueter declined by 36%, and that of Spartina alterniflora by 58%. The spatial distributions of their seed banks were also different. Soil seed density of Scirpus mariqueter was not determined directly by seed production, but positively correlated with total aboveground biomass of the whole plant community. On the contrary, soil seed density of Spartina alterniflora just after seed rain (November) was significantly correlated with seed production, but had a poor relationship with the community's aboveground biomass. Our results indicated that other factors such as tidal movement might have had great influence on dispersal of Scirpus mariqueter, which would also affect its population dynamics. The understanding of this process can help us improve the conservation and restoration efforts.  相似文献   

12.
Plant zonation patterns across New England salt marshes have been investigated for years, but how nutrient availability differs between zones has received little attention. We investigated how N availability, P availability, and plant N status varied across Juncus gerardii, Spartina patens, and mixed forb zones of a Northern New England high salt marsh. We also investigated relationships between several edaphic factors and community production and diversity across the high marsh. P availability, soil salinity, and soil moisture were higher in the mixed forb zone than in the two graminoid zones. NH+ 4-N availability was highest in the J. gerardii zone, but NO 3-N availability and mid season net N mineralization rates did not vary among zones. Plant tissue N concentrations were highest in the mixed forb zone and lowest in the S. patens zone, reflecting plant physiologies more so than soil N availability. Community production was highest in the J. gerardii zone and was positively correlated with N availability and negatively correlated with soil moisture. Plant species diversity was highest in the mixed forb zone and was positively correlated with P availability and soil salinity. Thus, nutrient availability, plant N status, and plant species diversity varied across zones of this high marsh. Further investigation is needed to ascertain if soil nutrient availability influences or is a result of the production and diversity differences that exist between vegetation zones of New England high salt marshes.  相似文献   

13.
Surface diatom samples were collected from two saltmarshes in the Seymour–Belize Inlet Complex on the mainland coast of British Columbia to examine the controls on diatom distribution and provide training sets for regional studies of sea-level change. Cluster analysis and detrended correspondence analysis (DCA) were used to examine diatom distributions within and between the two marshes whilst canonical correspondence analysis (CCA) and partial canonical correspondence analysis (pCCA) were used to analyse species–environment relationships. The diatom assemblages were shown to be quite different between the two marshes, Waump and Wawwat'l. Q-mode cluster analysis separated the diatom assemblages from Waump into three zones corresponding to recognized vegetation zones; diatom zone C corresponds to the high marsh and is dominated by Pinnularia obscura, Caloneis bacillum and Diploneis ovalis, zone B spans the high- and mid marsh and is characterised by Fragilaria exigua, Nitzchia palea and D. ovalis, whilst zone A from the low marsh/tidal flat includes high frequencies of Diploneis smithii, Ctenophora pulchella and F. exigua. Three different diatom zones were recognised at Wawwat'l; two upper zones, E and F, corresponding to the mid-marsh which are dominated by mixed abundances of N. palea and Fragilaria construens var. venter, Navicula peregrina and Navicula clementis and zone D from the low marsh/tidal flat with increased frequencies of F. exigua and Achnanthes delicatula. At Waump, the major controls on diatom distribution were found to be elevation and to a lesser extent pH, whilst at Wawwat'l, the primary controls were grain size/organic content, conductivity and elevation. The results confirm that saltmarsh diatoms may have potential for future sea-level studies in this region. However, caution must be exercised as the significant difference in the diatom assemblages between the two marshes suggests that the diatoms are responding to a number of environmental variables on a local scale. Some of this variation may reflect highly seasonal changes in sedimentation and salinity resulting from the proximity of the marshes to adjacent streams which are subject to spring freshet. Local differences in elevation between the collected samples may also account for some of the assemblage variability. The results emphasize the great diversity and high sensitivity of intertidal diatom species to environmental controls.  相似文献   

14.
Water movement has a strong impact on the development and persistence of helophyte stands along large water bodies. The decline ofScirpus andPhragmites stands in the Rhine-Meuse estuary (The Netherlands), due to changed hydrodynamic conditions (reduced tidal action, increased shoreline erosion), illustrates the effects of large-scale hydrological regulation. Hydrodynamic factors partly explain the distribution and composition of helophyte vegetation bordering the open water. A vertical zonation emerges during the stages of dispersal, germination, seedling establishment and adult growth of the plants. Differences between species may result in the occupation of different water-depth zones. Additionally, gradients of wave exposure result in a horizontal zonation along water bodies. Restrictions to helophyte development due to the hydrological regime and wave attack should be taken into account in wetland restoration studies. Water-level management, instead of a strict control of water levels, should be one of the key elements of water management in the future.  相似文献   

15.
Benthic foraminiferal assemblages in subrecent deposits are commonly used to reconstruct past sea level. Interpretations are generally made by comparison with either modern dead or total (live plus dead) assemblages. In both cases there will have been post-mortem changes that have differentially affected preservation. It is therefore important to establish the primary ecological controls by analysis of the living assemblages. We have determined the spatial and temporal variability of intertidal benthic foraminifera in the surface (0–1 cm) sediments from a time series survey of 31 sampling stations at Cowpen Marsh, for a period of 12 months. We counted 112,067 live foraminifera assigned to 28 species. The fauna was dominated by two agglutinated species (Jadammina macrescens and Trochammina inflata) on the high and middle marshes, and three calcareous species (Elphidium williamsoni, Haynesina germanica and Quinqueloculina spp.) on the low marsh and tidal flat.The standing crop of the whole intertidal zone, including the high, middle, low marsh and tidal flat habitats, and the individual species varied both temporally and spatially. The standing crop of the intertidal zone as a whole was greatest in the summer months and showed a positive correlation with elevation. The standing crops of the high and middle marshes showed similar temporal variation with peaks in summer and autumn and a trough in winter. The low marsh showed numerous peaks and troughs of standing crop during the year, whereas the tidal flat showed a single peak in summer. The standing crops of Jadammina macrescens and Trochammina inflata on the high and middle marshes peaked from April to May and August to October with troughs in winter. These agglutinated species showed a strong correlation with elevation. Haynesina germanica peaked in May to August and November to January on the low marsh, whereas on the tidal flat there was a single peak in July. The standing crops of E. williamsoni on the low marsh and tidal flat were relatively high in June and May, and July, respectively. Quinqueloculina spp. peaked in May to July on the low marsh and July on the tidal flat. The species was also found in the middle marsh from July to May and high marsh from September to November. Haynesina germanica showed a strong negative correlation with elevation, whereas the other two dominant calcareous species demonstrated weak negative correlations with both elevation and salinity.Reconstructing former sea level depends primarily on the recognition of high and middle marsh assemblages and in this study these are shown to be strongly controlled by elevation rather than salinity. Caution may be needed in interpreting low marsh and tidal flat data as salinity plays a more important role here.  相似文献   

16.
Salt marshes of Samborombón Bay (Argentina) have been grazed sporadically at very low stocking rates, but in the last decade, grazing intensity increased due to agriculture expansion. We investigated the effect of cattle grazing on vegetation and soil salinity on the most extended Spartina densiflora community. This community develops along an elevation gradient where the frequency and duration of tidal flooding and soil salinity increased as elevation decreased. Vegetation and soil data were collected from a national park excluded to cattle grazing for 30 years and from an adjacent commercial livestock farm continuously grazed by cattle. As elevation level decreased, plant cover, richness and diversity of functional groups and species decreased. As we expected, grazing altered soil salinity and vegetation composition in different extent along the elevation gradient. Grazing changed vegetation structure more intensively in the high elevation level because it reduced the competitive exclusion exerted by S. densiflora, allowing the increase in floristic richness. Grazing increased soil salinity and the contribution of salt-tolerant species only in the medium but not in the low elevation level probably because the higher frequency and duration of tidal flooding counterbalanced the increase in evaporation promoted by biomass removal in the low respect to the medium elevation level. While grazing may cause positive impacts for plant conservation in the high elevation level, it may cause negative consequence for livestock production because of the reduction in forage quality along the entire elevation gradient.  相似文献   

17.
Narrow fringing salt marshes dominated by Spartina alterniflora occur naturally along estuarine shorelines and provide many of the same ecological functions as more extensive marshes. These fringing salt marshes are sometimes incorporated into shoreline stabilization efforts. We obtained data on elevation, salinity, sediment characteristics, vegetation and fish utilization at three study sites containing both natural fringing marshes and nearby restored marshes located landward of a stone sill constructed for shoreline stabilization. During the study, sediment accretion rates in the restored marshes were approximately 1.5- to 2-fold greater than those recorded in the natural marshes. Natural fringing marsh sediments were predominantly sandy with a mean organic matter content ranging between 1.5 and 6.0%. Average S. alterniflora stem density in natural marshes ranged between 130 and 222 stems m−2, while mean maximum stem height exceeded 64 cm. After 3 years, one of the three restored marshes (NCMM) achieved S. alterniflora stem densities equivalent to that of the natural fringing marshes, while percentage cover and maximum stem heights were significantly greater in the natural than in the restored marshes at all sites. There was no significant difference in the mean number of fish, crabs or shrimp captured with fyke nets between the natural and restored marshes, and only the abundance of Palaemonetes vulgaris (grass shrimp) was significantly greater in the natural marshes than in the restored ones. Mean numbers of fish caught per 5 m of marsh front were similar to those reported in the literature from marshes adjacent to tidal creeks and channels, and ranged between 509 and 634 fish net−1. Most of the field data and some of the sample analyses were obtained by volunteers as they contributed 223 h of the total 300 h spent collecting data from three sites in one season. The use of fyke nets required twice as many man-hours as any other single task. Vegetation and sediment parameters were sensitive indicators of marsh restoration success, and volunteers were capable of contributing a significant portion of the labor needed to collect these parameters. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

18.
In coastal wetlands, invasive plants often act as ecosystem engineers altering flow, light and sediments which, in turn, can affect benthic animal communities. However, the degree of influence of the engineer will vary significantly as it grows, matures and senesces, and surprisingly little is known about how the influence of an ecosystem engineer varies with ontogeny. We address this issue on the tidal flats of San Francisco Bay where hybrid Spartina (foliosa × alterniflora) invaded 30 years ago. The invasion has altered the physico-chemical properties of the sediment habitat, which we predicted should cause changes in macrofaunal community structure and function. Through mensurative and manipulative approaches we investigated the influence of different growth stages of hybrid Spartina on macrobenthos and the underlying mechanisms. Cross-elevation sampling transects were established covering 5 zones (or stages) of the invasion, running from the tidal flat (pre-invasion) to an unvegetated dieback zone. Additionally, we experimentally removed aboveground plant structure in the mature (inner) marsh to mimic the ’unvegetated areas’. Our results revealed four distinct faunal assemblages, which reflected Spartina-induced changes in the corresponding habitat properties along an elevation gradient: a pre-invaded tidal flat, a leading edge of immature invasion, a center of mature invasion, and a senescing dieback area. These stages of hybrid Spartina invasion were accompanied by a substantial reduction in macrofaunal species richness and an increase in dominance, as well as a strong shift in feeding modes, from surface microalgal feeders to subsurface detritus/Spartina feeders (mainly tubificid oligochaetes and capitellid polychaetes). Knowledge of the varying influence of plant invaders on the sediment ecosystem during different phases of invasion is critical for management of coastal wetlands.  相似文献   

19.
Liao CZ  Luo YQ  Fang CM  Chen JK  Li B 《Oecologia》2008,156(3):589-600
Past studies have focused primarily on the effects of invasive plants on litter decomposition at soil surfaces. In natural ecosystems, however, considerable amounts of litter may be at aerial and belowground positions. This study was designed to examine the effects of Spartina alterniflora invasion on the pool sizes and decomposition of aerial, surficial, and belowground litter in coastal marshlands, the Yangtze Estuary, which were originally occupied by two native species, Scirpus mariqueter and Phragmites australis. We collected aerial and surficial litter of the three species once a month and belowground litter once every 2 months. We used the litterbag method to quantify litter decomposition at the aerial, surficial and belowground positions for the three species. Yearly averaged litter mass in the Spartina stands was 1.99 kg m−2; this was 250 and 22.8% higher than that in the Scirpus (0.57 kg m−2) and Phragmites (1.62 kg m−2) stands, respectively. The litter in the Spartina stands was primarily distributed in the air (45%) and belowground (48%), while Scirpus and Phragmites litter was mainly allocated to belowground positions (85 and 59%, respectively). The averaged decomposition rates of aerial, surficial, and belowground litter were 0.82, 1.83, and 1.27 year−1 for Spartina, respectively; these were 52, 62 and 69% of those for Scirpus litter at corresponding positions and 158, 144 and 78% of those for Phragmites litter, respectively. The differences in decomposition rates between Spartina and the two native species were largely due to differences in litter quality among the three species, particularly for the belowground litter. The absolute amount of nitrogen increased during the decomposition of Spartina stem, sheath and root litter, while the amount of nitrogen in Scirpus and Phragmites litter declined during decomposition for all tissue types. Our results suggest that Spartina invasion altered the carbon and nitrogen cycling in the coastal marshlands of China.  相似文献   

20.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh.Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat.Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.Corresponding Editor: R.E. Turner Manuseript  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号