首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in domestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these techniques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In situ hybridization revealed that bacteria belonging to the genus Nitrosomonas were the numerically dominant ammonia-oxidizing bacteria in both types of biofilms. Bacteria belonging to the genus Nitrobacter were not detected; instead, Nitrospira-like bacteria were the main nitrite-oxidizing bacteria in both types of biofilms. Nitrospira-like cells formed irregularly shaped aggregates consisting of small microcolonies, which clustered around the clusters of ammonia oxidizers. Whereas most of the ammonia-oxidizing bacteria were present throughout the biofilms, the nitrite-oxidizing bacteria were restricted to the active nitrite-oxidizing zones, which were in the inner parts of the biofilms. Microelectrode measurements showed that the active ammonia-oxidizing zone was located in the outer part of a biofilm, whereas the active nitrite-oxidizing zone was located just below the ammonia-oxidizing zone and overlapped the location of nitrite-oxidizing bacteria, as determined by FISH.  相似文献   

2.
Nitrification was investigated in a model freshwater sediment by the combined use of microsensors and fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes. In situ nitrification activity was restricted mainly to the upper 2 mm of the sediment and coincided with the maximum abundance of nitrifying bacteria, i.e. 1.5 x 107 cells cm-3 for ammonia-oxidizing Beta-proteobacteria (AOB) and 8.6 x 107 cells cm-3 for Nitrospira-like nitrite-oxidizing bacteria (NOB). Cell numbers of AOB decreased more rapidly with depth than numbers of NOB. For the first time, Nitrospira-like bacteria could be quantified and correlated with in situ nitrite oxidation rates in a sediment. Estimated cell-specific nitrite oxidation rates were 1.2-2.7 fmol NO2- cell-1 h-1.  相似文献   

3.
Cryosectioned biofilm from three depths (0.5, 3.0 and 6.0 m) in a full-scale nitrifying trickling filter (NTF) were studied using fluorescence in situ hybridization (FISH). A large number of sections were used to determine how the biofilm thickness, structure and community composition varied with depth along the ammonium concentration gradient in the NTF, and how the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were distributed vertically within the biofilm. Both the biofilm thickness and relative biomass content of the biofilm decreased with depth, along with structural differences such as void size and surface roughness. Four AOB populations were found, with two Nitrosomonas oligotropha populations dominating at all depths. A smaller population of Nitrosomonas europaea was present only at 0.5 m, while a population of Nitrosomonas communis increased with depth. The two N. oligotropha populations showed different vertical distribution patterns within the biofilm, indicating different ecophysiologies even though they belong to the same AOB lineage. All NOB were identified as Nitrospira sp., and were generally more associated with the biofilm base than the surface-associated dominating AOB population. Additionally, a small population of anaerobic ammonia-oxidizers was found at 6.0 m, even though the biofilm was well aerated.  相似文献   

4.
We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that "Brocadia"-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 microm) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH(4)(+) and NO(2)(-) consumption rates decreased from 0.68 and 0.64 micromol cm(-2) h(-1) at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 micromol cm(-2) h(-1) at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH(4)(+) and NO(2)(-) and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O(2) or organic compounds, which consequently established suitable microenvironments for anammox bacteria.  相似文献   

5.
Ecophysiological interactions between the community members (i.e., nitrifiers and heterotrophic bacteria) in a carbon-limited autotrophic nitrifying biofilm fed only NH(4)(+) as an energy source were investigated by using a full-cycle 16S rRNA approach followed by microautoradiography (MAR)-fluorescence in situ hybridization (FISH). Phylogenetic differentiation (identification) of heterotrophic bacteria was performed by 16S rRNA gene sequence analysis, and FISH probes were designed to determine the community structure and the spatial organization (i.e., niche differentiation) in the biofilm. FISH analysis showed that this autotrophic nitrifying biofilm was composed of 50% nitrifying bacteria (ammonia-oxidizing bacteria [AOB] and nitrite-oxidizing bacteria [NOB]) and 50% heterotrophic bacteria, and the distribution was as follows: members of the alpha subclass of the class Proteobacteria (alpha-Proteobacteria), 23%; gamma-Proteobacteria, 13%; green nonsulfur bacteria (GNSB), 9%; Cytophaga-Flavobacterium-Bacteroides (CFB) division, 2%; and unidentified (organisms that could not be hybridized with any probe except EUB338), 3%. These results indicated that a pair of nitrifiers (AOB and NOB) supported a heterotrophic bacterium via production of soluble microbial products (SMP). MAR-FISH revealed that the heterotrophic bacterial community was composed of bacteria that were phylogenetically and metabolically diverse and to some extent metabolically redundant, which ensured the stability of the ecosystem as a biofilm. alpha- and gamma-Proteobacteria dominated the utilization of [(14)C]acetic acid and (14)C-amino acids in this biofilm. Despite their low abundance (ca. 2%) in the biofilm community, members of the CFB cluster accounted for the largest fraction (ca. 64%) of the bacterial community consuming N-acetyl-D-[1-(14)C]glucosamine (NAG). The GNSB accounted for 9% of the (14)C-amino acid-consuming bacteria and 27% of the [(14)C]NAG-consuming bacteria but did not utilize [(14)C]acetic acid. Bacteria classified in the unidentified group accounted for 6% of the total heterotrophic bacteria and could utilize all organic substrates, including NAG. This showed that there was an efficient food web (carbon metabolism) in the autotrophic nitrifying biofilm community, which ensured maximum utilization of SMP produced by nitrifiers and prevented buildup of metabolites or waste materials of nitrifiers to significant levels.  相似文献   

6.
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3)d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L(-1). Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosomonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662.  相似文献   

7.
A biofilm from a nitrifying pilot-scale sequencing batch reactor was investigated for effects of varying process conditions on its microscale activity and structure. Microsensor measurements of oxygen, substrates and products of nitrification were applied under incubation at different ammonium and oxygen concentrations which reflected various situations during a treatment cycle. A high net N loss was observed under high ammonium (HA) concentrations in contrast to low ones. Additionally, results indicated inhibition of nitrite-oxidizing bacteria (NOB), but not of ammonia-oxidizing bacteria (AOB) by free ammonia under HA conditions. Diversity, spatial distribution, and abundance of nitrifying bacteria as analysed by fluorescence in situ hybridization (FISH) revealed six different nitrifying populations with heterogeneous distributions. Nitrosococcus mobilis formed conspicuous microcolonies locally surrounded by cells of the dominating N. europaea/eutropha-related AOB population. A third less abundant population was affiliated to N. oligotropha. Nitrite-oxidizing bacteria of the genera Nitrobacter and Nitrospira (with at least two distinct populations) showed a large scale heterogeneity in their distribution. Nitrospira spp. were also found in deeper inactive layers where they might persist rather than thrive, and act as seed population when detached. Results of functional and structural analyses are discussed with respect to specific niches of individual populations in this system.  相似文献   

8.
A fine-scale in situ spatial organization of ammonia-oxidizing bacteria (AOB) in biofilms was investigated by combining molecular techniques (i.e., fluorescence in situ hybridization (FISH) and 16S rDNA-cloning analysis) and microelectrode measurements. Important parameters of AOB microcolonies such as size distribution and areal cell density of the microcolonies were determined and correlated with substrate microprofiles in the biofilms. In situ hybridization with a nested 16S rRNA-targeted oligonucleotide probe set revealed two different populations of AOB, Nitrosomonas europaea-lineage and Nitrosospira multiformis-lineage, coexisting in an autotrophic nitrifying biofilm. Nitrosospira formed looser microcolonies, with an areal cell density of 0.51 cells microm(-2), which was half of the cell density of Nitrosomonas (1.12 cells microm(-2)). It is speculated that the formation of looser microcolonies facilitates substrate diffusion into the microcolonies, which might be a survival strategy to low O(2) and NH(4) (+) conditions in the biofilm. A long-term experiment (4-week cultivation at different substrate C/N ratios) revealed that the size distribution of AOB microcolonies was strongly affected by better substrate supply due to shorter distance from the surface and the presence of organic carbon. The microcolony size was relatively constant throughout the autotrophic nitrifying biofilm, while the size increased by approximately 80% toward the depth of the biofilm cultured at the substrate C/N = 1. A short-term ( approximately 3 h) organic carbon addition experiment showed that the addition of organic carbon created interspecies competition for O(2) between AOB and heterotrophic bacteria, which dramatically decreased the in situ NH(4) (+)-uptake activity of AOB in the surface of the biofilms. This result might explain the spatial distribution of AOB microcolony size in the biofilms cultured at the substrate C/N = 1. These experimental results suggest O(2) and organic carbon were the main factors controlling the spatial organization and activity of AOB in biofilms. These findings are significantly important to further improve mathematical models used to describe how the slow-growing AOB develop their niches in biofilms and how that configuration affects nitrification performance in the biofilm.  相似文献   

9.
The effect of environmental conditions, especially ammonium concentration, on community composition and nitrification activity of nitrifying bacterial biofilms in a pilot wastewater treatment plant was examined. A decreasing ammonium gradient was created when four aerated tanks with suspended carrier material were serially fed with wastewater. Community composition was analysed using fluorescence in situ hybridization (FISH) probes as well as partial 16S rRNA and amoA gene analysis using polymerase chain reaction-denaturating gradient gel electrophoresis (PCR-DGGE) and sequencing. Fluorescence in situ hybridization probes identified at least five ammonia-oxidizing bacterial (AOB) and two nitrite-oxidizing bacterial (NOB) populations. A change in nitrifying community was detected in the tanks, indicating that ammonium was an important structuring factor. Further, we found support for different autoecology within the Nitrosomonas oligotropha lineage, as at least one population within this lineage increased in relative abundance with ammonium concentration while another population decreased. Absolute numbers of AOB and NOB growing in biofilms on the carriers were determined and the cell specific nitrification rates calculated seemed strongly correlated to ammonium concentration. Oxygen could also be limiting in the biofilms of the first tank with high ammonium concentrations. The response of the nitrifying community to increased ammonium concentrations differed between the tanks, indicating that activity correlates with community structure.  相似文献   

10.
The spatial distribution and activities of nitrifying and denitrifying bacteria in sponge media were investigated using diverse tools, because understanding of in situ microbial condition of sponge phase is critical for the successful design and operation of sponge media process. The bacterial consortia within the media was composed of diverse groups including a 14.5% Nitrosomonas spp.-like ammonia oxidizing bacteria (AOB), 12.5% Nitrobacter spp.-like nitrite oxidizing bacteria (NOB), 2.0% anaerobic ammonium-oxidizing (ANAMMOX) bacteria and 71.0% other bacteria. The biofilm appeared to be most dense in the relatively outer region of the media and gradually decreased with depth, but bacterial viabilities showed space-independent feature. The fluorescent in situ hybridization results revealed that AOB and NOB co-existed in similar quantities on the side fragments of the media, which was reasonably supported by the microelectrode measurements showing the concomitant oxidation of NH(4) (+) and production of NO(3) (-) in this zone. However, a significantly higher fraction of AOB was observed in the center than side fragment. As with the overall biofilm density profile, the denitrifying bacteria were also more abundant on the side than in the center fragments. ANAMMOX bacteria detected throughout the entire depth offer another advantage for the removal of nitrogen by simultaneously converting NH(4) (+) and NO(2) (-) to nitrogen gas.  相似文献   

11.
The effects of growth type, including attached growth, suspended growth, and combined growth, on the characteristics of communities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were studied in three lab-scale Anaerobic/Anoxicm-Oxicn (AmOn) systems. These systems amplified activated sludge, biofilms, and a mixture of activated sludge and biofilm (AS-BF). Identical inocula were adopted to analyze the selective effects of mixed growth patterns on nitrifying bacteria. Fluctuations in the concentration of nitrifying bacteria over the 120 days of system operation were analyzed, as was the composition of nitrifying bacterial community in the stabilized stage. Analysis was conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. According to the DGGE patterns, the primary AOB lineages were Nitrosomonas europaea (six sequences), Nitrosomonas oligotropha (two sequences), and Nitrosospira (one sequence). The primary subclass of NOB community was Nitrospira, in which all identified sequences belonged to Nitrospira moscoviensis (14 sequences). Nitrobacter consisted of two lineages, namely Nitrobacter vulgaris (three sequences) and Nitrobacter alkalicus (two sequences). Under identical operating conditions, the composition of nitrifying bacterial communities in the AS-BF system demonstrated significant differences from those in the activated sludge system and those in the biofilm system. Major varieties included several new, dominant bacterial sequences in the AS-BF system, such as N. europaea and Nitrosospira and a higher concentration of AOB relative to the activated sludge system. However, no similar differences were discovered for the concentration of the NOB population. A kinetic study of nitrification demonstrated a higher maximum specific growth rate of mixed sludge and a lower half-saturation constant of mixed biofilm, indicating that the AS-BF system maintained relatively good nitrifying ability.  相似文献   

12.
The link between nitritation success in a membrane‐aerated biofilm reactor (MABR) and the composition of the initial ammonia‐ and nitrite‐oxidizing bacterial (AOB and NOB) population was investigated. Four identically operated flat‐sheet type MABRs were initiated with two different inocula: from an autotrophic nitrifying bioreactor (Inoculum A) or from a municipal wastewater treatment plant (Inoculum B). Higher nitritation efficiencies (NO2‐N/NH4+‐N) were obtained in the Inoculum B‐ (55.2–56.4%) versus the Inoculum A‐ (20.2–22.1%) initiated reactors. The biofilms had similar oxygen penetration depths (100–150 µm), but the AOB profiles [based on 16S rRNA gene targeted real‐time quantitative PCR (qPCR)] revealed different peak densities at or distant from the membrane surface in the Inoculum B‐ versus A‐initiated reactors, respectively. Quantitative fluorescence in situ hybridization (FISH) revealed that the predominant AOB in the Inoculum A‐ and B‐initiated reactors were Nitrosospira spp. (48.9–61.2%) versus halophilic and halotolerant Nitrosomonas spp. (54.8–63.7%), respectively. The latter biofilm displayed a higher specific AOB activity than the former biofilm (1.65 fmol cell?1 h?1 versus 0.79 fmol cell?1 h?1). These observations suggest that the AOB and NOB population compositions of the inoculum may determine dominant AOB in the MABR biofilm, which in turn affects the degree of attainable nitritation in an MABR.  相似文献   

13.
The study reports diversity in nitrifying microbial enrichments from low (0·5–5‰) and high (18–35‰) saline ecosystems. Microbial community profiling of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) enrichments was analysed by sequencing 16S rRNA and was processed using Mothur pipeline. The α-diversity indices showed the richness of nitrifying bacterial consortia from the high saline environment and were clustering based on the source of the sample. AOB and NOB enrichments from both the environments showed diverse lineages of phyla distributed in both groups with 38 and 34 phyla from low saline and 53 and 40 phyla in high saline sources, respectively. At class level, α- and γ-proteobacteria were found to be more dominant in both the enrichments. AOBs and NOBs in enrichments from low saline environments were dominated by Nitrosomonadaceae, Gallionellaceae (Nitrotoga sp.) and Ectothiorhodospiraceae and Nitrospira, respectively. Though Chromatiaceae were present in both AOB and NOB enrichments, Nitrosoglobus and Nitrosococcus dominated the AOBs while NOBs were dominated by uncultured genera, whereas Rhizobiales were found in both the enrichments. AOBs and NOBs in enrichments from high saline environments were dominated by Nitrospira-like AOBs, Nitrosomonas and Nitrosococcus genera, whereas ammonia-oxidizing archaea (AOA) group included Nitrosopumilus and Nitrososphaera genera comprising and Nitrospirae, respectively. The majority of the genera obtained in both the salinities were found to be either uncultured or unclassified groups. Results of the study suggest that the AOB and NOB consortia have unique and diverse microbes in each of the enrichments, capable of functioning in aquaculture systems practised at different salinities (0–60 ppt).  相似文献   

14.
In this study, ammonia-oxidizing bacteria present in biofilms resulting from a nitrifying reactor were detected by both a conventional FISH technique and an original in situ PCR technique. Both techniques showed that ammonia-oxidizing bacteria were found near the surface of the biofilms. However, after the biofilm had been exposed to 2 weeks of ammonia starvation, ammonia-oxidizing bacteria present in the biofilm could not be detected by fluorescence in situ hybridization (FISH) because they did not have sufficient copies of rRNA. In contrast, ammonia-oxidizing bacteria could be detected by in situ PCR with strong signal. It was thus demonstrated that a cell possessing a specific functional gene is detectable by in situ PCR regardless of its activity.  相似文献   

15.
We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in domestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these techniques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In situ hybridization revealed that bacteria belonging to the genus Nitrosomonas were the numerically dominant ammonia-oxidizing bacteria in both types of biofilms. Bacteria belonging to the genus Nitrobacter were not detected; instead, Nitrospira-like bacteria were the main nitrite-oxidizing bacteria in both types of biofilms. Nitrospira-like cells formed irregularly shaped aggregates consisting of small microcolonies, which clustered around the clusters of ammonia oxidizers. Whereas most of the ammonia-oxidizing bacteria were present throughout the biofilms, the nitrite-oxidizing bacteria were restricted to the active nitrite-oxidizing zones, which were in the inner parts of the biofilms. Microelectrode measurements showed that the active ammonia-oxidizing zone was located in the outer part of a biofilm, whereas the active nitrite-oxidizing zone was located just below the ammonia-oxidizing zone and overlapped the location of nitrite-oxidizing bacteria, as determined by FISH.  相似文献   

16.
In this study, we analysed the nitrifying microbial community (ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) within three different aerobic granular sludge treatment systems as well as within one flocculent sludge system. Granular samples were taken from one pilot plant run on municipal wastewater as well as from two lab-scale reactors. Fluorescent in situ hybridization (FISH) and quantitative PCR (qPCR) showed that Nitrobacter was the dominant NOB in acetate-fed aerobic granules. In the conventional system, both Nitrospira and Nitrobacter were present in similar amounts. Remarkably, the NOB/AOB ratio in aerobic granular sludge was elevated but not in the conventional treatment plant suggesting that the growth of Nitrobacter within aerobic granular sludge, in particular, was partly uncoupled from the lithotrophic nitrite supply from AOB. This was supported by activity measurements which showed an approximately threefold higher nitrite oxidizing capacity than ammonium oxidizing capacity. Based on these findings, two hypotheses were considered: either Nitrobacter grew mixotrophically by acetate-dependent dissimilatory nitrate reduction (ping-pong effect) or a nitrite oxidation/nitrate reduction loop (nitrite loop) occurred in which denitrifiers reduced nitrate to nitrite supplying additional nitrite for the NOB apart from the AOB.  相似文献   

17.
Previously uncultured nitrite-oxidizing bacteria affiliated to the genus Nitrospira have for the first time been successfully enriched from activated sludge from a municipal wastewater treatment plant. During the enrichment procedure, the abundance of the Nitrospira-like bacteria increased to approximately 86% of the total bacterial population. This high degree of purification was achieved by a novel enrichment protocol, which exploits physiological features of Nitrospira-like bacteria and includes the selective repression of coexisting Nitrobacter cells and heterotrophic contaminants by application of ampicillin in a final concentration of 50 microg ml(-1). The enrichment process was monitored by electron microscopy, fluorescence in situ hybridization (FISH) with rRNA-targeted probes and fatty acid profiling. Phylogenetic analysis of 16S rRNA gene sequences revealed that the enriched bacteria represent a novel Nitrospira species closely related to uncultured Nitrospira-like bacteria previously found in wastewater treatment plants and nitrifying bioreactors. The enriched strain is provisionally classified as 'Candidatus Nitrospira defluvii'.  相似文献   

18.
Uncultivated Nitrospira-like bacteria in different biofilm and activated-sludge samples were investigated by cultivation-independent molecular approaches. Initially, the phylogenetic affiliation of Nitrospira-like bacteria in a nitrifying biofilm was determined by 16S rRNA gene sequence analysis. Subsequently, a phylogenetic consensus tree of the Nitrospira phylum including all publicly available sequences was constructed. This analysis revealed that the genus Nitrospira consists of at least four distinct sublineages. Based on these data, two 16S rRNA-directed oligonucleotide probes specific for the phylum and genus Nitrospira, respectively, were developed and evaluated for suitability for fluorescence in situ hybridization (FISH). The probes were used to investigate the in situ architecture of cell aggregates of Nitrospira-like nitrite oxidizers in wastewater treatment plants by FISH, confocal laser scanning microscopy, and computer-aided three-dimensional visualization. Cavities and a network of cell-free channels inside the Nitrospira microcolonies were detected that were water permeable, as demonstrated by fluorescein staining. The uptake of different carbon sources by Nitrospira-like bacteria within their natural habitat under different incubation conditions was studied by combined FISH and microautoradiography. Under aerobic conditions, the Nitrospira-like bacteria in bioreactor samples took up inorganic carbon (as HCO(3)(-) or as CO(2)) and pyruvate but not acetate, butyrate, and propionate, suggesting that these bacteria can grow mixotrophically in the presence of pyruvate. In contrast, no uptake by the Nitrospira-like bacteria of any of the carbon sources tested was observed under anoxic or anaerobic conditions.  相似文献   

19.
Aquaculture, especially shrimp farming, has played a major role in the growth of Thailand's economy in recent years, as well as in many South East Asian countries. However, the nutrient discharges from these activities have caused adverse impacts on the quality of the receiving waterways. In particular nitrogenous compounds, which may accumulate in aquaculture ponds, can be toxic to aquatic animals and cause environmental problems such as eutrophication. The mineralization process is well known, but certain aspects of the microbial ecology of nitrifiers, the microorganisms that convert ammonia to nitrate, are poorly understood. A previously reported enrichment of nitrifying bacteria (ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) from a shrimp farm inoculated in a sequencing batch reactor (SBR) was studied by molecular methods. The initial identification and partial quantification of the nitrifying bacteria (AOB and NOB) were carried out by fluorescence in situ hybridization (FISH) using previously published 16S rRNA-targeting oligonucleotide probes. The two dominant bacterial groups detected by FISH were from the Cytophaga-Flavobacterium-Bacteroides and Proteobacteria (beta subdivision) phyla. Published FISH probes for Nitrobacter and Nitrospira did not hybridize to any of the bacterial cells. Therefore it is likely that new communities of NOBs, differing from previously reported ones, exist in the enrichments. Molecular genetic techniques (cloning, sequencing, and phylogenetic analysis) targeting the 16S rRNA genes from the nitrifying enrichments were performed to identify putative AOBs and NOBs.  相似文献   

20.

Aim

To provide deeper insights into nitrification process within aerobic bioreactors containing supplemental physical support media (hybrid bioreactors).

Methods and Results

Three bench‐scale hybrid bioreactors with different media size and one control bioreactor were operated to assess how biofilm integrity influences microbial community conditions and bioreactor performance. The systems were operated initially at a 5‐day hydraulic retention time (HRT), and all reactors displayed efficient nitrification and chemical oxygen demand (COD) removal (>95%). However, when HRT was reduced to 2·5 days, COD removal rates remained high, but nitrification efficiencies declined in all reactors after 19 days. To explain reduced performance, nitrifying bacterial communities (ammonia‐oxidizing bacteria, AOB; nitrite‐oxidizing bacteria, NOB) were examined in the liquid phase and also on the beads using qPCR, FISH and DGGE. Overall, the presence of the beads in a reactor promoted bacterial abundances and diversity, but as bead size was increased, biofilms with active coupled AOB–NOB activity were less apparent, resulting in incomplete nitrification.

Conclusions

Hybrid bioreactors have potential to sustain effective nitrification at low HRTs, but support media size and configuration type must be optimized to ensure coupled AOB and NOB activity in nitrification.

Significance and Impact of the Study

This study shows that AOB and NOB coupling must be accomplished to minimize nitrification failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号