首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
DNA repair by homologous recombination is essential for preserving genomic integrity. The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) play important roles in this process. In this study, we show that human RAD51 interacts with RAD51C-XRCC3 or RAD51B-C-D-XRCC2. In addition to being critical for RAD51 focus formation, RAD51C localizes to DNA damage sites. Inhibition of RAD51C results in a decrease in cellular proliferation consistent with a role in repairing double-strand breaks (DSBs) that occur naturally. To monitor a single DNA repair event, we developed immunofluorescence and chromatin immunoprecipitation (ChIP) methods on human cells where a unique DSB can be created in vivo. Using this system, we observed a single focus of RAD51C, RAD51 and 53BP1, which colocalized with gamma-H2AX. ChIPs revealed that endogenous human RAD51, RAD51C, RAD51D, XRCC2, XRCC3 and MRE11 proteins are recruited in the S-G2 phase of the cell cycle, while Ku80 is recruited during G1. We propose that RAD51C ensures a tight regulation of RAD51 assembly during DSB repair and plays a direct role in repairing DSBs in vivo.  相似文献   

2.
In addition to joining broken DNA strands, several non-homologous end-joining (NHEJ) proteins have a second seemingly antithetical role in constructing functional telomeres, the nucleoprotein structures at the termini of linear eukaryotic chromosomes that prevent joining between natural chromosome ends. Although NHEJ deficiency impairs double-strand break (DSB) repair, it also promotes inappropriate chromosomal end fusions that are observed microscopically as dicentric chromosomes with telomeric DNA sequence at points of joining. Here, we test the proposition that unprotected telomeres can fuse not only to other dysfunctional telomeres, but also to ends created by DSBs. Severe combined immunodeficiency (scid) is caused by a mutation in the catalytic subunit of DNA-dependent protein kinase (DNA-PK), an enzyme required for both efficient DSB repair and telomeric end-capping. Cells derived from wild-type, Trp53-/-, scid, and Trp53-/-/scid mice were exposed to gamma radiation to induce DSBs, and chromosomal aberrations were analyzed using a novel cytogenetic technique that can detect joining of a telomere to a DSB end. Telomere-DSB fusions were observed in both cell lines having the scid mutation, but not in wild-type nor Trp53-/- cells. Over a range of 25-340 cGy, half of the visible exchange-type chromosomal aberrations in Trp53-/-/scid cells involved telomere-DSB fusions. Our results demonstrate that unprotected telomeres are not only sensed as, but also acted upon, by the DNA repair machinery as if they were DSB ends. By opening a new pathway for misrepair, telomere-DSB fusion decreases the overall fidelity of DSB repair. The high frequency of these events in scid cells indicates telomere dysfunction makes a strong, and previously unsuspected, contribution to the characteristic radiation sensitivity associated with DNA-PK deficiency.  相似文献   

3.

Background  

The homologous recombination (HR) pathway is vital for maintaining genomic integrity through the restoration of double-stranded breaks and interstrand crosslinks. The RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) are essential for this process in vertebrates, and the RAD51D paralog is unique in that it participates in both HR repair and telomere maintenance. RAD51D is also known to directly interact with the RAD51C and XRCC2 proteins. Rad51d splice variants have been reported in mouse and human tissues, supportive of a role for alternative splicing in HR regulation. The present study evaluated the interaction of the Rad51d splice isoform products with RAD51C and XRCC2 and their expression patterns.  相似文献   

4.
In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.  相似文献   

5.
BRCA1 and BRCA2 are the most well-known breast cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. One such gene, RAD51C, is essential for homologous recombination repair. Several likely pathogenic RAD51C mutations have been identified in BRCA1- and BRCA2-negative breast and ovarian cancer families. We performed complete sequencing of RAD51C in germline DNA of 286 female breast and/or ovarian cancer cases with a family history of breast and ovarian cancers, who had previously tested negative for mutations in BRCA1 and BRCA2. We screened 133 breast cancer cases, 119 ovarian cancer cases, and 34 with both breast and ovarian cancers. Fifteen DNA sequence variants were identified; including four intronic, one 5' UTR, one promoter, three synonymous, and six non-synonymous variants. None were truncating. The in-silico SIFT and Polyphen programs were used to predict possible pathogenicity of the six non-synonomous variants based on sequence conservation. G153D and T287A were predicted to be likely pathogenic. Two additional variants, A126T and R214C alter amino acids in important domains of the protein such that they could be pathogenic. Two-hybrid screening and immunoblot analyses were performed to assess the functionality of these four non-synonomous variants in yeast. The RAD51C-G153D protein displayed no detectable interaction with either XRCC3 or RAD51B, and RAD51C-R214C displayed significantly decreased interaction with both XRCC3 and RAD51B (p<0.001). Immunoblots of RAD51C-Gal4 activation domain fusion peptides showed protein levels of RAD51C-G153D and RAD51C-R214C that were 50% and 60% of the wild-type, respectively. Based on these data, the RAD51C-G153D variant is likely to be pathogenic, while the RAD51C- R214C variant is hypomorphic of uncertain pathogenicity. These results provide further support that RAD51C is a rare breast and ovarian cancer susceptibility gene.  相似文献   

6.
Slijepcevic P 《DNA Repair》2006,5(11):1299-1306
Telomeres are specialized structures at chromosome ends which play the key role in chromosomal end protection. There is increasing evidence that many DNA damage response proteins are involved in telomere maintenance. For example, cells defective in DNA double strand break repair proteins including Ku, DNA-PKcs, RAD51D and the MRN (MRE11/RAD51/NBS1) complex show loss of telomere capping function. Similarly, mouse and human cells defective in ataxia telangiectasia mutated (ATM) have defective telomeres. A total of 14 mammalian DNA damage response proteins have, so far, been implicated in telomere maintenance. Recent studies indicate that three more proteins, namely BRCA1, hRad9 and PARP1 are involved in telomere maintenance. The involvement of a wide range of DNA damage response proteins at telomeres raises an important question: do telomere maintenance mechanisms constitute an integral part of DNA damage response machinery? A model termed the "integrative" model is proposed here to argue in favour of telomere maintenance being an integral part of DNA damage response. The "integrative" model is supported by the observation that a telomeric protein, TRF2, is not confined to its local telomeric environment but it migrates to the sites of DNA breakage following exposure of cells to ionizing radiation. Furthermore, even if telomeres are maintained in a non-canonical way, as in the case of Drosophila, DNA damage response proteins are still involved in telomere maintenance suggesting integration of telomere maintenance mechanisms into the DNA damage response network.  相似文献   

7.
RAD51B and RAD51C are two of five known paralogs of the human RAD51 protein that are thought to function in both homologous recombination and DNA double-strand break repair. This work describes the in vitro and in vivo identification of the RAD51B/RAD51C heterocomplex. The RAD51B/RAD51C heterocomplex was isolated and purified by immunoaffinity chromatography from insect cells co-expressing the recombinant proteins. Moreover, co-immunoprecipitation of the RAD51B and RAD51C proteins from HeLa, MCF10A, and MCF7 cells strongly suggests the existence of an endogenous RAD51B/RAD51C heterocomplex. We extended these observations to examine the interaction between the RAD51B/RAD51C complex and the other RAD51 paralogs. Immunoprecipitation using protein-specific antibodies showed that RAD51C is central to a single large protein complex and/or several smaller complexes with RAD51B, RAD51D, XRCC2, and XRCC3. However, our experiments showed no evidence for the inclusion of RAD51 within these complexes. Further analysis is required to elucidate the function of the RAD51B/RAD51C heterocomplex and its association with the other RAD51 paralogs in the processes of homologous recombination and DNA double-strand break repair.  相似文献   

8.
9.
Homologous recombination is key to the maintenance of genome integrity and the creation of genetic diversity. At the mechanistic level, recombination involves the invasion of a homologous DNA template by broken DNA ends, repair of the break and exchange of genetic information between the two DNA molecules. Invasion of the template in eukaryotic cells is catalysed by the RAD51 and DMC1 recombinases, assisted by a number of accessory proteins, including the RAD51 paralogues. Eukaryotic genomes encode a variable number of RAD51 paralogues, ranging from two in yeast to five in animals and plants. The RAD51 paralogues form at least two distinct protein complexes, believed to play roles in the assembly and stabilization of the RAD51‐DNA nucleofilament. Somatic recombination assays and immunocytology confirm that the three ‘non‐meiotic’ paralogues of Arabidopsis, RAD51B, RAD51D and XRCC2, are involved in somatic homologous recombination, and that they are not required for the formation of radioinduced RAD51 foci. Given the presence of all five proteins in meiotic cells, the apparent absence of a meiotic role for RAD51B, RAD51D and XRCC2 is surprising, and perhaps simply the result of a more subtle meiotic phenotype in the mutants. Analysis of meiotic recombination confirms this, showing that the absence of XRCC2, and to a lesser extent RAD51B, but not RAD51D, increases rates of meiotic crossing over. The roles of RAD51B and XRCC2 in recombination are thus not limited to mitotic cells.  相似文献   

10.
Loss of telomeric DNA leads to telomere uncapping, which triggers a persistent, p53-centric DNA damage response that sustains a stable senescence-associated proliferation arrest. Here, we show that in normal cells telomere uncapping triggers a focal telomeric DNA damage response accompanied by a transient cell cycle arrest. Subsequent cell division with dysfunctional telomeres resulted in sporadic telomeric sister chromatid fusions that gave rise to next-mitosis genome instability, including non-telomeric DNA lesions responsible for a stable, p53-mediated, senescence-associated proliferation arrest. Unexpectedly, the blocking of Rad51/RPA-mediated homologous recombination, but not non-homologous end joining (NHEJ), prevented senescence despite multiple dysfunctional telomeres. When cells approached natural replicative senescence, interphase senescent cells displayed genome instability, whereas near-senescent cells that underwent mitosis despite the presence of uncapped telomeres did not. This suggests that these near-senescent cells had not yet acquired irreversible telomeric fusions. We propose a new model for telomere-initiated senescence where tolerance of telomere uncapping eventually results in irreversible non-telomeric DNA lesions leading to stable senescence. Paradoxically, our work reveals that senescence-associated tumor suppression from telomere shortening requires irreversible genome instability at the single-cell level, which suggests that interventions to repair telomeres in the pre-senescent state could prevent senescence and genome instability.  相似文献   

11.
Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand-pairing step in HR. RAD51 associated protein 1 (RAD51AP1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress, and RAD51AP1 is epistatic to the HR protein XRCC3. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA-damaging treatment. Purified RAD51AP1 binds both dsDNA and a D loop structure and, only when able to interact with RAD51, greatly stimulates the RAD51-mediated D loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.  相似文献   

12.
The Rad51 protein in eukaryotic cells is a structural and functional homolog of Escherichia coli RecA with a role in DNA repair and genetic recombination. Several proteins showing sequence similarity to Rad51 have previously been identified in both yeast and human cells. In Saccharomyces cerevisiae, two of these proteins, Rad55p and Rad57p, form a heterodimer that can stimulate Rad51-mediated DNA strand exchange. Here, we report the purification of one of the representatives of the RAD51 family in human cells. We demonstrate that the purified RAD51L3 protein possesses single-stranded DNA binding activity and DNA-stimulated ATPase activity, consistent with the presence of "Walker box" motifs in the deduced RAD51L3 sequence. We have identified a protein complex in human cells containing RAD51L3 and a second RAD51 family member, XRCC2. By using purified proteins, we demonstrate that the interaction between RAD51L3 and XRCC2 is direct. Given the requirements for XRCC2 in genetic recombination and protection against DNA-damaging agents, we suggest that the complex of RAD51L3 and XRCC2 is likely to be important for these functions in human cells.  相似文献   

13.
Continuously dividing cells must be protected from telomeric and nontelomeric DNA damage in order to maintain their proliferative potential. Here, we report a novel telomere-protecting mechanism regulated by nucleostemin (NS). NS depletion increased the number of telomere damage foci in both telomerase-active (TA(+)) and alternative lengthening of telomere (ALT) cells and decreased the percentage of damaged telomeres associated with ALT-associated PML bodies (APB) and the number of APB in ALT cells. Mechanistically, NS could promote the recruitment of PML-IV to SUMOylated TRF1 in TA(+) and ALT cells. This event was stimulated by DNA damage. Supporting the importance of NS and PML-IV in telomere protection, we demonstrate that loss of NS or PML-IV increased the frequency of telomere damage and aberration, reduced telomeric length, and perturbed the TRF2(ΔBΔM)-induced telomeric recruitment of RAD51. Conversely, overexpression of either NS or PML-IV protected ALT and TA(+) cells from telomere damage. This work reveals a novel mechanism in telomere protection.  相似文献   

14.
The efficient repair of double-strand breaks in DNA is critical for the maintenance of genome stability. In response to ionizing radiation and other DNA-damaging agents, the RAD51 protein, which is essential for homologous recombination, relocalizes within the nucleus to form distinct foci that can be visualized by microscopy and are thought to represent sites where repair reactions take place. The formation of RAD51 foci in response to DNA damage is dependent upon BRCA2 and a series of proteins known as the RAD51 paralogues (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3), indicating that the components present within foci assemble in a carefully orchestrated and ordered manner. By contrast, RAD51 foci that form spontaneously as cells undergo DNA replication at S phase occur without the need for BRCA2 or the RAD51 paralogues. It is known that BRCA2 interacts directly with RAD51 through a series of degenerative motifs known as the BRC repeats. These interactions modulate the ability of RAD51 to bind DNA. Taken together, these observations indicate that BRCA2 plays a critical role in controlling the actions of RAD51 at both the microscopic (focus formation) and molecular (DNA binding) level.  相似文献   

15.
The repair of DNA damage by homologous recombination (HR) is a key pathway for the maintenance of genetic stability in mammalian cells, especially during and following DNA replication. The central HR protein is RAD51, which ensures high fidelity DNA repair by facilitating strand exchange between damaged and undamaged homologous DNA segments. Several RAD51-like proteins, including XRCC2, appear to help with this process, but their roles are not well understood. Here we show that XRCC2 is highly conserved and that most substantial truncations of the protein destroy its ability to function. XRCC2 and its partner protein RAD51L3 are found to interact with RAD51 in the 2-hybrid system, and XRCC2 is shown to be important but not essential for the accumulation of RAD51 at the sites of DNA damage. We visualize the localization of XRCC2 protein at the same sites of DNA damage for the first time using specialized irradiation conditions. Our data indicate that an important function of XRCC2 is to enhance the activity of RAD51, so that the loss of XRCC2 results in a severe delay in the early response of RAD51 to DNA damage.  相似文献   

16.
Homologous recombination is an important mechanism in DNA replication to ensure faithful DNA synthesis and genomic stability. In this study, we investigated the role of XRCC2, a member of the RAD51 paralog family, in cellular recovery from replication arrest via homologous recombination. The protein expression of XRCC2, as well as its binding partner RAD51D, is dramatically increased in S- and G2-phases, suggesting that these proteins function during and after DNA synthesis. XRCC2 mutant irs1 cells exhibit hypersensitivity to hydroxyurea (HU) and are defective in the induction of RAD51 foci after HU treatment. In addition, the HU-induced chromatin association of RAD51 is deficient in irs1 mutant. Interestingly, irs1 cells are only slightly sensitive to thymidine and able to form intact RAD51 foci in S-phase cells arrested with thymidine. Irs1 cells showed increased level of chromatin-bound RAD51 as well as the wild type cells after thymidine treatment. Both HU and thymidine induce gamma-H2AX foci in arrested S-phase nuclei. These results suggest that XRCC2 is involved in repair of HU-induced damage, but not thymidine-induced damage, at the stalled replication forks. Our data suggest that there are at least two sub-pathways in homologous recombination, XRCC2-dependent and -independent, for repair of stalled replication forks and assembly of RAD51 foci following replication arrest in S-phase.  相似文献   

17.
DNA repair by nonhomologous end-joining (NHEJ) relies on the Ku70:Ku80 heterodimer in species ranging from yeast to man. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, Ku also controls telomere functions. Here, we show that Ku70, Ku80, and DNA-PKcs, with which Ku interacts, associate in vivo with telomeric DNA in several human cell types, and we show that these associations are not significantly affected by DNA-damaging agents. We also demonstrate that inactivation of Ku80 or Ku70 in the mouse yields telomeric shortening in various primary cell types at different developmental stages. By contrast, telomere length is not altered in cells impaired in XRCC4 or DNA ligase IV, two other NHEJ components. We also observe higher genomic instability in Ku-deficient cells than in XRCC4-null cells. This suggests that chromosomal instability of Ku-deficient cells results from a combination of compromised telomere stability and defective NHEJ.  相似文献   

18.
Ku86 together with Ku70, DNA-PKcs, XRCC4 and DNA ligase IV forms a complex involved in repairing DNA double-strand breaks (DSB) in mammals. Yeast Ku has an essential role at the telomere; in particular, Ku deficiency leads to telomere shortening, loss of telomere clustering, loss of telomeric silencing and deregulation of the telomeric G-overhang. In mammals, Ku proteins associate to telomeric repeats; however, the possible role of Ku in regulating telomere length has not yet been addressed. We have measured telomere length in different cell types from wild-type and Ku86-deficient mice. In contrast to yeast, Ku86 deficiency does not result in telomere shortening or deregulation of the G-strand overhang. Interestingly, Ku86–/– cells show telomeric fusions with long telomeres (>81 kb) at the fusion point. These results indicate that mammalian Ku86 plays a fundamental role at the telomere by preventing telomeric fusions independently of the length of TTAGGG repeats and the integrity of the G-strand overhang.  相似文献   

19.
Role of RAD51C and XRCC3 in genetic recombination and DNA repair   总被引:1,自引:0,他引:1  
In germ line cells, recombination is required for gene reassortment and proper chromosome segregation at meiosis, whereas in somatic cells it provides an important mechanism for the repair of DNA double-strand breaks. Five proteins (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) that share homology with RAD51 recombinase and are known as the RAD51 paralogs are important for recombinational repair, as paralog-defective cell lines exhibit spontaneous chromosomal aberrations, defective DNA repair, and reduced gene targeting. The paralogs form two distinct protein complexes, RAD51B-RAD51C-RAD51D-XRCC2 and RAD51C-XRCC3, but their precise cellular roles remain unknown. Here, we show that, like MLH1, RAD51C localized to mouse meiotic chromosomes at pachytene/diplotene. Using immunoprecipitation and gel filtration analyses, we found that Holliday junction resolvase activity associated tightly and co-eluted with the 80-kDa RAD51C-XRCC3 complex. Taken together, these data indicate that the RAD51C-XRCC3-associated Holliday junction resolvase complex associates with crossovers and may play an essential role in the resolution of recombination intermediates prior to chromosome segregation.  相似文献   

20.
Recent evidence for 5'-cytosine (C)-rich overhangs at the telomeres of the nematode Caenorhabditis elegans provided the impetus to re-examine the end structure of mammalian telomeres. Two-dimensional (2D) gel electrophoresis, single telomere-length analysis (STELA), and strand-specific exonuclease assays revealed the presence of a 5'-C-rich overhang at the telomeres of human and mouse chromosomes. C-overhangs were prominent in G1/S arrested as well as terminally differentiated cells, indicating that they did not represent replication intermediates. C-rich overhangs were far more prevalent in tumor cells engaged in the alternative lengthening of telomeres (ALT) pathway of telomere maintenance, which relies on the homologous recombination (HR) machinery. Transient siRNA-based depletion of the HR-specific proteins RAD51, RAD52, and XRCC3 resulted in changes in C-overhang levels, implicating the involvement of 5'-C-overhangs in the HR-dependent pathway of telomere maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号