首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The objective of this study was to quantify adsorption and degradation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1 -methylethyl) acetamide] and metribizun [4-amino-6-(1,1 -dimethylethyl)-3-(methylthio)-1,2,4-trazine-5(4H)-one] in a soil planted to winter covers clover (Trifolium sp.), vetch (Vicia villosa), and wheat (Triticum aestivum). Surface soil samples (0 to 5?cm) from Memphis silt loam (fine-silty, mixed, thermic Typic Hapludalf) were collected and equilibrated with herbicide at initial concentrations ranging from 0 to 20?mg L?1 that were then applied for a batch experiment. Soils were treated either with a single herbicide or a mixture of the two herbicides. For the degradation experiments, herbicides at a concentration of 10?mg kg?1 soil were applied and incubated for 21?d at ~23°C. Metolachlor and metribuzin adsorptions were described by the Freundlich isotherm. Average Freundlich distribution coefficient (Kf) for metolachlor was significantly higher (p≥0.05) than that of metribuzin in soils under the three crop covers irrespective of method of application. The Kf for metolachlor ranged from 18.38 to 11.18?L kg?1, and Kf for metribuzin ranged from 1.80 to 0.93?L kg?1. Average normalized distribution coefficient (Koc) for metolachlor was significantly higher (p≥0.05) than average Koc for metribuzin irrespective of crop cover. After 21 days of incubation, average half-life of metolachlor across soil under the three crop covers was significantly higher than the average half-life of metribuzin (p≥0.05). Half-life values ranged from 20.6 to 24.9 days for metolachlor, and 4.4 to 12.4 days for metribuzin. In soils treated with metribuzin, the half-life was highest for soil under wheat and lowest for soil under clover (p≥0.05).  相似文献   

2.
In this study, the adsorption behavior of Cd ions by rhizosphere soil (RS) and non-rhizosphere soil (NS) originated from mulberry field was investigated. The Langmuir, Freundlich and the Dubinin–Radushkevich (D-R) equations were used to evaluate the type and efficiency of Cd adsorption. The RS was characterized by lower pH but the higher content of soil organic matter and cation exchange capacity (CEC) as compared to NS. Also, the maximum adsorption of Cd2+ for RS (5.87 mg/g) was slightly bigger than that for NS (5.36 mg/g). In Freundlich isotherm, the Kf of the adsorption of Cd2+ to surface of the RS components was higher than that of the NS, indicating stronger attraction between Cd2+ and components of the RS. According to the D-R model, the adsorption of Cd2+ by both soils was dominated by ion exchange phenomena. These results indicated that mulberry roots modified physical and chemical properties of the RS under field conditions, which also affected the Cd sorption efficiency by soil components during laboratory experiments. Current knowledge of the Cd2+ sorption processes in the rhizosphere of mulberry may be important if these trees are planted for use in phytoremediation of Cd contaminated soils.  相似文献   

3.
Cadmium (Cd) is a critical environmental chemical in which sorption reactions control its entry into soil solution. The aim of the present study was to evaluate Cd sorption characteristics of some soils of the northern part of Iran with a wide range of physicochemical properties. Duplicates of each sample were equilibrated with solutions containing 5 to 500 mg Cd L?1 with 0.01 M CaCl2 as background solution. The quantity of Cd retention was calculated as the difference between initial and equilibrated Cd concentration. Sorption isotherms including Freundlich, Langmuir, Temkin, Dubinin-Radushkevich, and Redlich-Peterson were used to evaluate the behavior of Cd sorption. Cadmium sorption data were well fitted to Langmuir, Freundlich, and Redlich-Peterson isotherms. The constant of Freundlich equation (kF ) and adsorption maxima (bL ) of Langmuir equation were related to pH and cation exchange capacity (CEC). The maximum buffering capacity (Kd ) was significantly correlated with pH (R2 = 0.52, p ≤ 0.001) and calcium carbonate equivalent (CCE) (R2 = 0.63, p ≤ 0.001). Redlich-Peterson constants (kRP and aRP ) were significantly correlated with pH (R2 kRP = 0.30, p ≤ 0.007) and (R2 aRP = 0.27, p ≤ 0.012). It seemed that pH, CEC, and CCE were the main soil properties regulating Cd retention behavior of the studied soils.  相似文献   

4.
Sorption and desorption are important processes that influence the transport, transformation, and bioavailability of imidacloprid in the soils. Equilibrium batch experiments were carried out using six coastal Croatian soils. The equilibrium sorption and desorption experimental data showed the best fit to the Freundlich equation. Sorption parameters predicted with the Freundlich model, KF sor and 1/n ranged from 2.92 to 5.74 (mg/kg)/(mg/L)1/n, and 0.888 to 0.919, respectively. The sorption of imidacloprid was found to be sensitive to organic carbon (OC) content. The highest sorption was observed in Krk soil (OC 4.74%) and the lowest in Zadar soil (OC 1.06%). Fitted desorption parameter values, KF des , were consistently higher than those associated with sorption. The opposite trend was observed for the exponential parameter 1/n. Results also suggested that imidacloprid sorption-desorption by soil is concentration-dependent, i.e. at lower imidacloprid concentrations a greater sorption percentage and lower desorption percentage occurred. Desorption studies revealed that there was a hysteresis effect in all the tested soils. Hysteresis coefficient values (H) varied from 0.656 to 0.859. The study results emphasize that the controlled application of imidacloprid is obligatory, especially in soils with a low organic carbon content, in order to minimize a risk of environmental and groundwater pollution.  相似文献   

5.
Cadmium and cadmium compounds are water soluble, mobile in most soils, bio-available, and tend to bio-accumulate. A pot culture experiment was conducted on contaminated soil to study the influence of lime and organic matter on the mobility of cadmium in spinach and its rhizosphere soil. Application of lime (50% and 100% lime requirement) and organic matter (0.5 and 1% by weight of soil) to soil decreased the availability of Cd to the soil and plant throughout the crop growth. The highest diethylene triamine penta-acetic acid (DTPA) extractable Cd was 10.84 mg kg?1 in the treatment OM0 L0 (No application of organic matter and lime) at 20 days after sowing of spinach. Likewise, the highest Cd concentration in spinach roots and shoots were 19.80 and 17.0 mg kg?1 in the treatment OM0 L0 at 20 days after sowing. The Cd concentration in spinach roots and shoots were decreased by 63.23 and 71.88%, respectively, in the treatment OM1 L100 (application of FYM at 1.0% by weight of soil and lime at 100% lime requirement) after 60 days of growth. The lowest concentrations of Cd in the soil and plant after the harvest of the crop were 2.88 and 4.27 mg kg?1, respectively, in the treatment OM1 L100 and resulted in 65.75 and 71.55% decrease over control (OM0 L0). The highest total chlorophyll content of leaves was 2.19 mg kg?1 of fresh weight in the treatment OM1 L100 at 40 days of crop growth.  相似文献   

6.
Alachlor, a globally used aniline herbicide, has great agronomic interest for controlling the development of broadleaved weeds and grasses. This research aspires to evaluate the sorption attributes of Alachlor through batch equilibrium method and its successive removal through biomass based activated carbon prepared from Sawdust (Cedrus deodara). Six soil samples were collected from selected regions of Pakistan to assess the adsorption and removal phenomena. Adsorption capacity for Alachlor varied in soils depending upon their physicochemical properties. Adsorption coefficient (Kd) values ranged from 12 to 31 µg ml?1 with the highest Kd value observed in soil sample with highest organic content (1.4%) and least pH (5.62). The Gibbs free energy values ranged from ?17 to ?20 kJ mol?1 proposing physio-sorption and exothermic interaction with soils. Values of R2 (0.96–0.99) exhibited the best fit to linear adsorption model. Adsorption coefficient displayed a negative correlation (r = ?0.97) with soil pH and positive correlation with organic matter (r = 0.87). The effect of contact time and pesticide concentration on the removal efficiency by activated carbon was investigated. The highest removal percentages observed through activated carbon were 66% and 64% at concentrations of 5 and 7.5 ppm respectively. Activated carbon from sawdust (Cedrus deodara) was investigated as a suitable adsorbent for the removal of Alachor from selected soils. Biomass based activated carbon can prove to be an effective and a sustainable mean to remove pesticides from soil.  相似文献   

7.
The characteristics of Cs sorption behavior in two soils (soil 1 and soil 2) with nearly the same clay content and exhangeable K concentration, but with different clay mineralogy, were studied by the quantification of the distribution coefficient (kd). It was observed that as the initial Cs concentration increased from 4 to 50 mg L?1, the kd values decreased in both soils, suggesting a progressive saturation of Cs available sorption sites. However, the presence of expansible 2:1 phyllosilicates minerals in the clay fraction of soil 2 maintained a high Cs sorption ability for this soil, even at high Cs concentrations. The experimental data were also fitted to the Freundlich isotherm and the results showed that parameters of the Freundlich equation could be used to estimate the degree of Cs sorption and the nature of the available sorption sites. For the studied soils, the kf and the kd values followed a similar trend and the n Freundlich constant values provided a reliable indicator for the soils’ clay mineralogy. The removal of the sand fraction enhanced Cs sorption in both soils and the absence of sorbed Cs ions on the quartz minerals, as observed by the SEM analysis, additionally supported the effect of particle-size fraction on Cs sorption.  相似文献   

8.
ABSTRACT

Sugarcane top-derived biochar was added to an alluvial soil, a moist soil and a paddy soil at the rate of 0.2% and 0.5% (w/w). After the addition of 0.2% and 0.5% biochar, the sorption coefficients (Kd) of atrazine (Ce = 10 mg L?1) were increased by 26.97% and 79.58%, respectively, in the moist soil with a low level of total organic carbon (TOC), while it increased by 31.43% and 60.06%, respectively, in the paddy soil with a high TOC content. The half-time persistence values of atrazine in the alluvial soil, moist soil and paddy soil were 28.18, 23.74 and 39.84 d, respectively. In the 0.2% biochar amended soils, the corresponding half-times of atrazine for the alluvial soil, moist soil and paddy soil were extended by 10.33, 11.81 and 1.42 d, and they were prolonged by 16.83, 17.52 and 14.74 d, respectively, in the 0.5% biochar amended soils. Atrazine degradation products (deisopropylatrazine and desethylatrazine) decreased after they accumulated to 3.2 and 1 mg kg?1, respectively. Generally, increasing sorption was accompanied by decreasing degradation of atrazine which is found in biochar-amended soils.  相似文献   

9.
Application of phosphorus (P) fertilizers to P-deficient soils can also result in P accumulation. In this study, soil P status and P uptake by apple trees were investigated in 5-, 10-, and 15-year-old orchards in the semi-arid Loess Plateau, China, and subset soils with different soil P statuses (14–90 Olsen-P mg kg−1) were selected to evaluate the characteristic P adsorption. Due to the low P-use efficiency (4–6%), total soil P increased from 540 mg kg−1 to 904 mg kg−1, Olsen-P ranged from 3.4 mg kg−1 to 30.7 mg kg−1, and CaCl2-P increased from less than 0.1 mg kg−1 to 0.66 mg kg−1 under continuous P fertilization. The P sorption isotherms for each apple orchard were found to fit the Langmuir isotherm model (R 2 = 0.91–0.98). K (binding energy) and Q m (P sorption maximum) decreased, whereas DPS (degree of phosphorus sorption) increased with increasing P concentration. CaCl2-P increased significantly with the increase of Olsen-P, especially above the change point of 46.1 mg kg−1. Application of surplus P could result in P enrichment in P-deficient soil which has high P fixation capacity, thus posing a significant environmental risk.  相似文献   

10.
Sonchus arvensis is one of the pioneer plant species that were found in the abandoned Bo Ngam Pb mine in Thailand. S. arvensis was collected from three sites. The highest Pb shoot concentration was 9317 mg kg?1 and the highest translocation factor (TF) and bioaccumulation factor (BF) values were 2.5 and 6.0, respectively. To investigate Pb uptake capacity of S. arvensis, a hydroponic experiment was performed for 15 d. S. arvensis exposed to 5 mg L?1 Pb solution had the highest Pb shoot accumulation (849 mg kg?1). In a pot study, S. arvensis was grown in Pb mine soils amended with organic and inorganic fertilizers for 2 mo. The addition of organic fertilizer to the soil increased plant dry biomass sharply. All treatments with ethylene-diamine-tetra-acetic acid (EDTA) had Pb accumulation in shoots greater than 1000 mg kg?1 and the highest Pb shoot accumulation was found in S. arvensis grown in soil amended with organic fertilizer and EDTA (1397 mg kg?1). In a field trial study, S. arvensis was grown at three sites in the mine area for 6 mo. S. arvensis could tolerate a total Pb of 100,000 mg kg?1 in the soil and accumulated Pb in the shoots up to 3664 mg kg?1 with high TF (2.19) and BF (2.38) values. These results suggest that S. arvensis is a good candidate for Pb phytoremediation.  相似文献   

11.
Field survey, hydroponic culture, and pot experiments were carried out to examine and characterize cadmium (Cd) and zinc (Zn) uptake and accumulation by Sedum jinianum, a plant species native to China. Shoot Cd and Zn concentrations in S. jinianum growing on a lead/Zn mine area reached 103–478 and 4165–8349 mg kg?1 (DM), respectively. The shoot Cd concentration increased with the increasing Cd supply, peaking at 5083 mg kg?1 (DM) when grown in nutrient at a concentration of 100 μmol L?1 for 32 d, and decreased as the solution concentration increased from 200 to 400 μmol L?1. The shoot-to-root ratio of plant Cd concentrations was > 1 when grown in solution Cd concentrations ≤ 200 μmol L?1. Foliar, stem, and root Zn concentrations increased linearly with the increasing Zn level from 1 to 9600 μmol L?1. The Zn concentrations in various plant parts decreased in the order roots > stem > leaves, with maximum concentrations of 19.3, 33.8, and 46.1 g kg?1 (DM), respectively, when plants were grown at 9600 μmol Zn L?1 for 32 d. Shoot Cd concentrations reached 16.4 and 79.8 mg kg?1 (DM) when plants were grown in the pots of soil with Cd levels of 2.4 mg kg?1 and 9.2 mg kg?1, respectively. At soil Zn levels of 619 and 4082 mg kg?1, shoot Zn concentrations reached 1560 and 15,558 mg kg?1 (DM), respectively. The results indicate that S. jinianum is a Cd hyperaccumulator with a high capacity to accumulate Zn in the shoots.  相似文献   

12.
The effects of dissolved organic matter (DOM), water soluble organic matter derived from sewage sludge, on the sorption of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-trazine) by soils were studied using a batch equilibrium technique. Six paddy soils, chosen so as to have different organic carbon contents, were experimented in this investigation. Atrazine sorption isotherms on soils were described by the linear equation, and the distribution coefficients without DOM (Kd) or with DOM (Kd *) were obtained. Generally, the values of Kd */Kd initially increased and decreased thereafter with increasing DOM concentrations of 0–60 mg DOC · L?1 in soil-solution system form. Critical concentrations of DOM (DOMnp) were obtained where the value of Kd * was equal to Kd. The presence of DOM with concentrations lower than DOMnp promoted atrazine sorption on soils (Kd * > Kd), whereas the presence of DOM with concentrations higher than DOMnp tended to inhibit atrazine sorption (Kd * < Kd). Interestingly, DOMnp for tested soils was negatively correlated to the soil organic carbon content, and the maximum of Kd */Kd (i.e.K max) correlated positively with the maximum of DOM sorption on soil (Xmax). Further investigations showed that the presence of hydrophobic fraction of DOM evidently promoted the atrazine sorption on soils, whereas the presence of hydrophilic DOM fraction obviously tended to inhibit the atrazine sorption. Interactions of soil surfaces with DOM and its fractions were suggested to be the major processes determining atrazine sorption on soils. The results of this work provide a reference to the agricultural use of organic amendment such as sewage sludge for improving the availability of atrazine in soils.  相似文献   

13.
High salinity wastewaters have limited treatment options due to the occurrence of salt inhibition in conventional biological treatments. Using recirculating marine aquaculture effluents as a case study, this work explored the use of Constructed Wetlands as a treatment option for nutrient and salt loads reduction. Three different substrates were tested for nutrient adsorption, of which expanded clay performed better. This substrate adsorbed 0.31 mg kg?1 of NH4 +?N and 5.60 mg kg?1 of PO4 3??P and 6.9 mg kg?1 dissolved salts after 7 days of contact. Microcosms with Typha latifolia planted in expanded clay and irrigated with aquaculture wastewater (salinity 2.4%, 7 days hydraulic retention time, for 4 weeks), were able to remove 94% NH4 +?N (inlet 0.25 ± 0.13 mg L?1), 78% NO2 ??N (inlet 0.78 ± 0.62 mg L?1), 46% NO3 ??N (inlet 18.83 ± 8.93 mg L?1) whereas PO4 3??P was not detected (inlet 1.41 ± 0.21 mg L?1). Maximum salinity reductions of 52% were observed. Despite some growth inhibition, plants remained viable, with 94% survival rate. Daily treatment dynamics studies revealed rapid PO4 3??P adsorption, unbalancing the N:P ratio and possibly affecting plant development. An integrated treatment approach, coupled with biomass valorization, is suggested to provide optimal resource management possibilities.  相似文献   

14.
Soil water distribution coefficients (K d ) for methyl tert-butyl ether (MTBE) and its primary biodegradation intermediate tert-butyl alcohol (TBA) were determined for seven hyporheic zone soils ranging from 1 to 7% in organic carbon. Samples were collected in the area of the Spring Creek hyporheic zone in Ronan, Montana. Values for K d ranged from 1.5 to 8.7 L kg?1 for MTBE and from 0.15 to 0.41 L kg?1 for TBA, and were highly correlated to the organic carbon content of the solids. However, for TBA the use of non-linear K F values is more appropriate based on the results obtained, and the value of K OC is calculated based on linear K d transformation of the data. Distribution coefficients normalized to the fraction of organic carbon (log K OC ) for MTBE and TBA were determined to be 2.13 ± 0.060 and 0.762 ± 0.088, respectively.  相似文献   

15.
Lou L  Wu B  Wang L  Luo L  Xu X  Hou J  Xun B  Hu B  Chen Y 《Bioresource technology》2011,102(5):4036-4041
To investigate the feasibility of using biochar to control organic pollutants in sediments, we extracted biochar from rice-straw combustion residues (RBC) and studied its adsorption ability and effect on seed germination ecotoxicity of pentachlorophenol (PCP). The results showed that the Freundlich and dual-mode models could describe all the sorption isotherm data well, and the log KOC values increased with increasing RBC content. With 50 mg kg−1 PCP in the sediment, a significant seed growth inhibition (P < 0.01) was observed. The addition of 2.0% RBC lowered the PCP concentration in the extraction liquid from 4.53 to 0.17 mg L−1 and increased the germination rate and root length significantly. Furthermore, it was found that the addition of RBC had no toxic but stimulative effect on root elongation. Consequently, RBC could serve as a potential supersorbent for the remediation of organic pollution in situ.  相似文献   

16.
The paucity of sorption studies of sulfonylurea herbicide Iodosulfuron has led to the current research for investigation of this imperative phenomena. Iodosulfuron adsorption capacity was evaluated through batch equilibrium experiments in six soil samples collected from distinct geographical regions of Pakistan. Activated carbon prepared from sawdust (Cedrus deodara) was investigated as an economical and sustainable adsorbent for the removal of Iodosulfuron from selected soils. Removal efficiency was studied as a function of contact time and pesticide concentration. Results exhibited a good adsorption capability of Iodosulfuron in different soils. Adsorption coefficient values ranged from 8.9 to 26 mL/g. Soil pH and organic matter greatly influenced the rate of adsorption. The linear adsorption model fitted best with the experimental results. Gibbs free energy values (?17 to ?20 kJ/mol) proposed physisorption and exothermic interaction of Iodosulfuron with selected soils. Analysis of variance and regression displayed a negative correlation of soil pH and Kd (R2 = ?0.91) and positive correlation with organic matter (R2 = 0.87). A good removal rate for was observed in soils by sawdust-derived activated carbon. Soil properties mainly; pH, organic matter and sand content greatly influenced Iodosulfuron removal phenomena. Biomass-derived activated carbon can thus be utilized as a sustainable remediation tool.  相似文献   

17.
Abstract

The uptake and distribution of arsenic (As) and some heavy metals was determined in three Viola endemic species from As‐overloaded soil in an abandoned mine at Alchar, Republic of Macedonia (FYROM – The Former Yugoslav Republic of Macedonia). Some essential elements were also analyzed in order to characterize the common geochemical properties of this site. Total As content in soil ranged from 3347 to 14,467 mg kg?1, and plant available As from 23 to 1589 mg kg?1. The concentration of As in roots ranged from 783 mg kg?1 in Viola macedonica to 2124 mg kg?1 in Viola arsenica. Only a small amount of As accumulated in the aboveground parts of these species (<100 mg kg?1), while in shoots of Viola allchariensis, As accumulated in the range 187–439 mg kg?1. Arsenic accumulation in the roots of these Viola species may make these plants valuable tools for the bioindication and phytoremediation (phytostabilization) of As in naturally loaded and anthropogenically contaminated soils.  相似文献   

18.
Red lead (Pb3O4) has been extensively used in the past in anti-corrosion paints for the protection of steel constructions such as electricity pylons or bridges. Until recently, little has been known about the behavior of these Pb compounds in soils. Therefore, three pylon soils and six red lead anti-corrosion paints were characterized in terms of solubility, Pb mineral composition, extractability, sorption and desorption, and the chemical speciation of Pb in soil extracts. The pylon soils were characterized by moderate total Pb concentrations (≈700 mg kg?1), while NH4NO3 extractable Pb was exceptionally high (up to 15% of total Pb). In soil extracts, the free Pb2+ fraction ranged from 33 to 81% of total soluble Pb. The equilibrium concentration of Pb derived from Pb3O4 in ultra-pure water reached 68.5 mg L?1. This high solubility explains the observed high extractability in soils and contradicts earlier reports of much lower water solubilities of the compound.  相似文献   

19.
The translocation of phosphorus (P) from terrestrial landscapes to aquatic bodies is of concern due to the impact of elevated P on aquatic system functioning and integrity. Due to their common location in depressions within landscapes, wetlands, including so-called geographically isolated wetlands (GIWs), receive and process entrained P. The ability of depressional wetlands, or GIWs, to sequester P may vary by wetland type or by land use modality. In this study we quantified three measures of P sorption capacities for two common GIW types (i.e., emergent marsh and forested wetlands) in two different land use modalities (i.e., agricultural and least impacted land uses) across 55 sites in Florida, USA. The equilibrium P concentration (EPC0) averaged 6.42 ± 5.18 mg P L?1 (standard deviation reported throughout); and ranged from 0.01–27.18 mg P L?1; there were no differences between GIW type or land use modality, nor interaction effects. Significant differences in phosphorus buffering capacity (PBC) were found between GIW types and land use, but no interaction effects. Forested GIWs [average 306.64 ± 229.63 (mg P kg?1) (µg P L?1)?1], and GIWs in agricultural settings [average 269.95 ± 236.87 (mg P kg?1) (µg P L?1)?1] had the highest PBC values. The maximum sorption capacity (Smax) was found to only differ by type, with forested wetlands (1274.5 ± 1315.7 mg P kg?1) having over three times the capacity of emergent GIWs (417.5 ± 534.6 mg P kg?1). Classification trees suggested GIW soil parameters of bulk density, organic content, and concentrations of total P, H2O-extractable P, and HCl-extractable P were important to classifying GIW P-sorption metrics. We conclude that GIWs have high potential to retain P, but that the entrained P may be remobilized to the wetland water column depending on storm and groundwater input P concentrations. The relative hydrologic dis-connectivity of GIWs from other aquatic systems may provide sufficient retention time to retain elevated P within these systems, thereby providing an ecosystem service to downstream waters.  相似文献   

20.
Sorption isotherms of Norfloxacin (NOF) to different fractions from six typical sediments in China were determined to compare the NOF sorption behavior and contribution of different fractions to total sorption. All sorption isotherms were nonlinear and fitted well with the Freundlich model. Sorption coefficients (K f) by original sediments changed in larger magnitude, from 114 (mg/g)/(mg/L)n to 5271 (mg/g)/(mg/L)n, and black carbon with more aromatic carbon has more sorption capacity and nonlinearity. The sorption capacity K f values were found to significantly correlate with SSA (specific surface area), OC (organic carbon), BC (black carbon), and TON (total organic nitrogen) (p < 0.05), but had no obvious relation with pH, CEC (cation exchange capacity), TOC/TON, and BC/TOC. The DOC removed, NaOH extracted, and 375°C heated fractions showed more nonlinear sorption than the original sediments, suggesting more heterogeneous sorption sites in these fractions. Among different sediment fractions, the 375°C heating fractions were responsible for >50% of the total NOF sorption over the whole concentration range. The contribution of DOC removed fractions to the total sorption was the highest at higher NOF concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号