首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Coffea arabica L. plantlets obtained ex vitro after sowing somatic embryos produced in a bioreactor in horticultural substrate were compared with those obtained in vitro from the same embryo population under conventional culturing conditions on semi-solid media. The intensity and quality of aerial and root system development were compared. Shoot emergence was more efficient in vitro but rooting frequencies were low. In contrast, all ex vitro-regenerated embryos rooted. The cotyledon area of mature embryos produced in a bioreactor positively affected plantlet development when regeneration was carried out ex vitro. Embryos with an intermediate cotyledon area (0.86 cm2) had the highest rates of plant conversion ex vitro (63%), and also resulted in vigorous plantlets. Mortality was higher in nursery conditions, but better plant development was obtained. The quality of plantlets produced under ex vitro conditions was reflected in better growth of the aerial and root systems, and also by similar morphological, mineral and water status characteristics to seedlings. Unlike roots formed on semi-solid media, those produced in soil were branched, fine (30-50% had a diameter of less than 0-5 mm) and they bore root hairs. Leaves of plantlets regenerated ex vitro had a histological structure similar to that of seedling leaves, and a lower stomatal density (100 vs. 233 mm-2). Moreover, they were more turgid, as indicated by higher pressure potential (psiP) (0.91 s. 0.30 MPa) and relative water content values (97 vs. 93%). Furthermore, under in vitro conditions, leaves had larger stomata which were abnormally round and raised. Direct sowing of germinated somatic embryos resulted in the rapid production of vigorous plantlets under ex vitro conditions, whilst removing the need for problematical and costly conventional acclimatization procedures.  相似文献   

2.
Factors affecting conversion of horse chestnut (A. hippocastanum L.) somatic embryos into plantlets were evaluated. Anther filament derived embryogenic tissue developed bipolar structures with two cotyledons and a well-developed shoot and root apical meristem upon auxin omittance from the culturing medium. The impact of carbohydrate type (glucose, fructose, sucrose and maltose) and concentration (3 and 6%) on somatic embryo maturation and conversion were evaluated. Although conversion frequencies were high for all treatments, overall quality of regenerated plantlets was poor. Increasing the carbohydrate concentration in the maturation medium did not increase conversion of somatic embryos or quality of regenerated plantlets in terms of shoot height. On the contrary, addition of PEG (polyethylene glycol) in maturation media had a beneficial effect on shoot quality of regenerated plantlets. Sucrose was a superior carbon source when PEG was included in the maturation medium, in terms of conversion rate (65.7%) as well as of shoot quality of plantlets (43.8% of plantlets had shoots >2 cm). Clonal fidelity of the different development stages of somatic embryogenesis and of converted plantlets was assessed by flow cytometry and no major ploidy changes were found.  相似文献   

3.
The maturation of soybean (Glycine max L. Merr.) somatic embryos was characterized. Maturation was assayed by evaluating the ability of somatic embryos to make the transition to a plantlet through a germination-like process. Somatic embryos were organized from cotyledons of immature soybean embryos. Maturation of somatic embryos occurred on a Murashige-Skoog basal medium supplemented with activated charcoal and 0.28 molar sucrose. After 8 weeks on this medium, somatic embryos exhibited vigorous, high frequency development to plantlets. The “germination” frequency (conversion) of somatic embryos, and plantlet recovery frequency varied concurrently with maturation period. Conversion and plant recovery required no exogenous growth regulators. Desiccation of immature somatic embryos under controlled humidity regimes resulted in increased frequency of conversion of immature somatic embryos. Morphological abnormalities appeared in the somatic embryos, but few were detrimental to conversion velocity. There was little effect of genotype on conversion velocity or frequency.  相似文献   

4.
Efficient plant regeneration through somatic embryogenesis was achieved from callus cultures derived from semi-mature cotyledon explants of Dalbergia sissoo Roxb., a timber-yielding leguminous tree. Somatic embryos developed over the surface of embryogenic callus and occasionally, directly from cotyledon explants without intervening callus phase. Callus cultures were initiated from cotyledon pieces of D. sissoo on Murashige and Skoog (1962) medium supplemented with 4.52, 9.04, 13.57, and 18.09 mumol/L 2,4-dichlorophenoxyacetic acid and 0.46 mumol/L Kinetin. Maximum percentage response for callus formation was 89% on MS medium supplemented with 9.04 mumol/L 2,4-D' and 0.46 mumol/L Kn. Somatic embryogenesis was achieved after transfer of embryogenic callus clumps to 1/2-MS medium without plant growth regulators (1/2-MSO). Average numbers of somatic embryos per callus clump was 26.5 on 1/2-MSO medium after 15 weeks of culture. Addition of 0.68 mmol/L L-glutamine to 1/2-MSO medium enhanced somatic embryogenesis frequency from 55% to 66% and the number of somatic embryos per callus clump from 26.5 to 31.1. Histological studies were carried out to observe various developmental stages of somatic embryos. About 50% of somatic embryos converted into plantlets on 1/2-MSO medium containing 2% sucrose, after 20 days of culture. Transfer of somatic embryos to 1/29-MSO medium containing 10% sucrose for 15 days prior to transfer on 1/2-MS medium with 2% sucrose enhanced the conversion of somatic embryos into plantlets from 50 to 75%. The plantlets with shoots and roots were transferred to 1/2 and 1/4-liquid MS medium, each for 10 days, and then to plastic pots containing autoclaved peat moss and compost mixture (1:1). 70% of the plantiets survived after 10 weeks of transfer to pots. 120 regenerated plantlets out of 150 were successfully acclimatised. After successful acclimatisation, plants were transferred to earthen pots.  相似文献   

5.
Summary In vitro propagation of Quassia amara L. (Simaroubaceae) was attempted using mature and juvenile explants. Attempts to establish in vitro culture using leaf and internode explants from a plant more than 15yr old were unsuccessful due to severe phenolic exudation. Plant regeneration through direct and indirect somatic embryogenesis was established from cotyledon explants. Murashige and Skoog (MS) medium with 8.9 μM N6-benzyladenine (BA) and 11.7 μM silver nitrate induced the highest number (mean of 32.4 embryos per cotyledon) of somatic embryos. Direct somatic embryogenesis as well as callus formation was observed on medium with BA (8.9–13.3 μM). Semi-mature pale green cotyledons were superior for the induction of somatic embryos. Embryos developed from the adaxial side as well as from the point of excision of the embryonic axis. More embryos were developed on the proximal end compared to mid and distal regions of the cotyledons. Subculture of callus (developed along with the somatic embryos on medium with BA alone) onto medium containing 8.9 μM BA and 11.7 μM silver nitrate produced a mean of 17.1 somatic embryos. Primary somatic embryos cultured on MS medium with 8.9 μM BA and 11.7μM silver nitrate produced a mean of 9.4 secondary somatic embryos. Most of the embryos developed up to early cotyledonary stage. Reduced concentration of BA (2.2 or 4.4 μM) improved maturation and conversion of embryos to plantlets. Ninety percent of the embryos converted to plantlets. The optimized protocol facilitated recovery of 30 plantlets per cotyledon explant within 80d. Plantlets transferred to small cups were subsequently transferred to field conditions with a survival rate of 90%.  相似文献   

6.
Somatic embryos differentiated from hypocotyl explant in cotton (Gossypium hirsutum L.) exhibited very divergent morphologies. Six different types of somatic embryos based on cotyledon development were observed. The growth hormones (2,4-dichlorophenoxyacetic acid and kinetin) used in induction and maintenance media did not affect embryo rooting and germination. The 95 % conversion of normal embryos (with two cotyledons) was achieved, while an overall conversion was only 38 %. Horn shaped embryos failed to exhibit shoot growth. Poorly developed apical meristems were responsible for lower conversion percentages in some of embryo classes. However, regenerated plants phenotypically resembled to seed grown control plants regardless of somatic embryo morphology.  相似文献   

7.
Studies were conduced to test the effects of various cytokinins on somatic embryogenesis from chickpea (Cicer arietinum L.) immature cotyledons. Zeatin (13.7 μmol) added, to B5 basal medium, supplemented with 1.5 % sucrose and 0.2 μmol indole-3-acetic acid, was the most effective cytokinin. Lobular structures obtained from cotyledons cultures were transferred to B5 basal medium supplemented with gibberellic acid and indole-3-butyric acid at different concentrations. The most effective treatment was B5 medium containing 14.4 μmol gibberellic acid plus 1.0 μmol indole-3-butyric acid in which 42.8 % of lobular structures cultured formed normal somatic embryos. High conversion of embryos into plantlets (61.0–65.2 % embryos regenerated plants) was observed when germinated embryos were placed on plant development medium.  相似文献   

8.
Experiments were performed to determine the influence of maturation medium carbohydrate content on the rates of germination and plantlet conversion (root and shoot growth) of somatic embryos from four embryogenic lines derived from leaf or internode explants of Quercus robur L. seedlings. The conversion rate was favoured by high carbohydrate content as long as the maturation medium contained at least 2% sucrose, which was necessary for healthy embryo development. Given this, sorbitol and mannitol favoured the conversion rate more efficiently than sucrose, the highest rate, 32%, being achieved by medium with 6% sorbitol and 3% sucrose. Maturation treatment did not affect the root or shoot lengths of converted embryos. In supplementary experiments, 2 weeks of gibberellic acid treatment between maturation and germination treatments did not improve germination rates, but did reduce root length and the number of leaves per regenerated plantlet. In the four embryogenic lines tested, plant recovery rate was enhanced by inclusion of benzyladenine into the germination medium following culture of the embryos on maturation medium with 6% sorbitol and 2-3% sucrose. In embryogenic systems it is important to assess the uniformity of the regenerants. Random amplified polymorphic DNA (RAPD) analysis using 32 arbitrary oligonucleotide primers was performed to study variability in DNA sequences within and between four embryogenic lines. No intraclonal nor interclonal polymorphism was detected between embryogenic lines originating from different types of explant from the same seedling, but every one of the primers detected enough polymorphism among clones originating from different plants to allow these three origins to be distinguished. No differences in DNA sequences between regenerated plantlets and their somatic embryos of origin were detected, but a nodular callus line that had lost its embryogenic capacity was found to be mutant with respect to three other clones originating from the same plantlet. This study shows that high carbohydrate levels in the maturation medium significantly increase plant conversion of oak somatic embryos, which exhibit no variation in DNA sequences when proliferated by secondary embryogenesis.  相似文献   

9.
The present study evaluated the effects of chilling, partial desiccation, cotyledon excision and successive subculture of microspore-derived embryos on plant development in oilseed rape (Brassica napus L.). The results showed that out of the five media, all the genotypes showed the best response when the embryos were cultured on the half-strength Murashige and Skoog medium with 2.0 mg dm−3 benzylaminopurine. A cold treatment for 3 or 5 d further increased frequencies of embryo germination (90.0 %) and plantlet development (58.46 %). Desiccation for one day also increased the embryo germination and plantlet development in all genotypes tested. Cutting the cotyledons of the embryos at late cotyledonary stage significantly increased the frequency of plantlet development. The highest rate of plantlet development was obtained from cultures of embryos sampled with size of less than 4.0 mm. The successive subculture further improved the germination and development of plantlets from embryos. In the genotype ZJU452, the rate of plantlet development reached 99.78 % after the second subculture of embryos.  相似文献   

10.
Summary Cotyledon explants of Panax ginseng at various developmental stages were cultured on Murashige and Skoog (MS) medium with 0.5 μM indole butyric acid and 8.8 μM N6-benzyladenine. Upon culturing of cotyledon explants from mature zygotic embryos, 34% of the explants formed somatic embryos, and 46% formed adventitious shoots. In the cotyledon explants from 1-wk-old seedlings, embryo axis-like shoots and roots developed at a high frequency (79%) near the excised portion of the cotyledon base. The developmental pattern of embryo axis-like organ formation was structurally different from that of somatic embryos and adventitious shoots but similar to that of parts of the embryo axis of zygotic embryos. In the early stages of embryo axis-like organ formation, epicotyl-like shoot primordia were developed directly from the cotyledon base after 2 wk of culture; subsequently roots developed near the base of the epicotyl-like shoots and eventually regenerated into plantlets with both shoots and roots. The frequency of embryo axis-like organ formation declined as the growth of seedlings proceeded. In addition, the frequency of somatic embryo and adventitious bud formation rapidly declined with the age of the cotyledons. Plant regeneration via embryo axis-like organ formation might be a new pattern of morphogenesis in P. ginseng cotyledon culture.  相似文献   

11.
For the mass production of chestnut trees with selected, hybrid, or genetically engineered genotypes, one potentially desirable propagation strategy is based on somatic embryogenesis. Although methods exist for the initiation of embryogenic cultures of Castanea sativa from immature zygotic embryos or leaf explants, the embryos produced have had low rates of conversion into plantlets. This study explored the possible benefits for somatic embryos that have already undergone maturation and cold treatments, of (a) partial slow or fast desiccation, and (b) of the addition of plant growth regulators or glutamine to the germination medium. Germination response was evaluated in terms of both conversions to plantlets and through embryos developing only shoots (shoot germination) that could be rooted following the micropropagation protocols developed for chestnut. Two or 3 wk slow desiccation in sealed empty Petri dishes resulted in a slight reduction in water content that nevertheless increased total potential plant recovery, shoot length, and the number of leaves per plantlet. However, best results were achieved by 2 h fast drying in a laminar flow hood, which reduced embryo moisture content to 57–58% and enhanced the potential plant recovery and quality of regenerated plantlets. Plant yield was also promoted by addition of 0.44 μM benzyladenine and 200–438 mg/l of glutamine to the germination medium, and plantlet quality (as evidenced by root, shoot, and leaf growth) by the further addition of 0.49 μM indole-3-butyric acid.  相似文献   

12.
Summary For the first time, regenerated plantlets were obtained from immature zygotic embryos of mango (Mangifera indica L.) through direct somatic embryogenesis. Pro-embryogenic mass (PEM)-like structures, which are differentiated as clusters of globular structures, were easily induced directly from the abaxial side of cotyledons from immature fruits, 2.0–3.5 cm diameter by a 2-wk culture period on a modified Murashige and Skoog medium with 5 mgl−1 (25μM) indole-3-butyric acid (IBA). Conversion of somatic embryos into plantlets was achieved after 4 wk of culture on the conversion medium containing 5mgl−1 (23 μM) kinetin. Secondary somatic embryogenesis could also be obtained directly from the hypocotyls of mature primary somatic embryos cultured on the conversion medium. In our experimental system, only minor problems were noted with browning of cultures.  相似文献   

13.
Induction of somatic embryos and plant regeneration was demonstrated for the first time in Alnus glutinosa. Somatic embryos were initiated from zygotic embryos collected 1–3 weeks post-anthesis (WPA), i.e., when they were at globular or early cotyledonary stage and were 0.5–1 mm in length. Induction frequency (16.6 %) and the mean number of somatic embryos (4.5 embryos/explant) were highest after culture of zygotic embryos, collected at 3 WPA, on Murashige and Skoog medium (MS) supplemented with 0.9-μM 2,4-dichlorophenoxyacetic acid and 2.22-μM benzyladenine (BA). No embryogenic induction was observed on medium with BA alone. Initial somatic embryos differentiated indirectly from callus tissue formed at the surface of the zygotic embryos. Embryogenic competence was maintained by secondary embryogenesis, which was affected by explant type, plant growth regulators and genotype. Secondary embryogenesis was induced by culture of small groups of whole somatic embryos or isolated cotyledon explants on medium consisting of MS medium (half-strength macronutrients) supplemented with 0.44-μM BA. Histological study of isolated cotyledon explants revealed that secondary embryos developed directly from differentiated embryogenic tissue on the surface of cotyledons. Somatic embryos at successive stages of development, including cotyledonary-stage embryos with shoot and root meristems, were evident. For plantlet conversion, somatic embryos were transferred to maturation medium supplemented with 3 % maltose, followed by 6 weeks of culture in Woody Plant Medium supplemented with 0.44-μM BA and 0.46-μM Zeatin (Z). This novel protocol appears promising for mass propagation, conservation and genetic transformation of black alder.  相似文献   

14.
Summary Somatic embryogenesis and plant regeneration have been achieved in Nothapodytes foetida, which is known for its rich source of anti-cancer and anti-AIDS alkaloids. Callus cultures were initiated from immature zygotic embryos cultured on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid, 6-benzyladenine (BA), and kinetin. MS medium devoid of plant growth regulators favored the development of globular somatic embryos that differentiated further into plantlets. Plantlet regeneration efficiency was effectively increased on MS medium supplemented with BA. Over 90% of the in vitro plantlets survived when transferred to the soil. Alkaloids were detected in different stages of somatic embryos, regenerated plantlets, and different parts of the 2-yr-old regenerated plants. The somatic embryos contains camptothecin (0.011% dry weight. DW) and 9-methoxycamptothecin (0.0028% DW). Two-yearold field-grown plants obtained from somatic embryos were analyzed and contained higher levels of camptothecin (0.20% DW) and 9-methoxycamptothecin. (0.097% DW) accumulated in roots, followed by stem and leaves. Alkaloids were quantified and identified by TLC and HPLC.  相似文献   

15.
Embryogenic cultures and somatic embryos were obtained from immature zygotic embryos of oak (Quercus robur L.) cultured on a modified MS medium and WPM containing BAP (1 mg·l–1) and GA3 (1 mg·l–1) or BAP and IBA. Germination and conversion of oak somatic embryos into plantlets was achieved on WPM containing a reduced concentration of cytokinin. Linden (Tilia cordata Mill.) somatic embryos developed in embryogenic tissues initiated from immature zygotic embryos cultured on a modified MS medium supplemented with 2,4-D (0.3-2.0 mg·l–1). Germination of linden somatic embryos and plantlet formation occurred on MS medium containing a low concentration of IBA. Oak and linden plantlets produced from somatic embryos were successfully established in soil. Somatic embryos and plantlets were also regenerated from embryogenic cultures of Quercus petraea and Tilia platyphyllos.Abbreviations BAP 6-benzyIaminopurine - GA3 gibberellic acid - IBA indole-3-butyric acid - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) - WPM woody plant medium  相似文献   

16.
Summary This report describes a low-cost method for generating large numbers of high quality mature white spruce (Picea glauca [Moench.] Voss) somatic embryos which survived desiccation and grew to plantlets more vigorously than excised zygotic embryos cultured in vitro. Somatic embryos from suspension culture were supported within a culture chamber on a flat absorbent pad above the surface of a liquid culture medium containing 20–50 M abscisic acid and 7.5 % polyethylene glycol. Throughout a 7 week culture period 3 L of fresh medium was pumped into one end of the chamber, while the spent medium exited by gravity from the opposite end. Over 6,300 cotyledonary stage white spruce somatic embryos were recovered after this time from a single culture chamber without manual manipulation. The somatic embryos were of excellent appearance with well developed cotyledons, and possessed high levels of storage lipids. They survived drying to about 8 % moisture content following treatment for 4 weeks at 63 % relative humidity, and following imbibition converted to normal plantlets at a frequency of 92 %, compared to 80 % for embryos grown in Petri dishes. Somatic embryos cultured within the bioreactor developed to plantlets that were 20 % longer than zygotic embryos excised from mature seed and grown in vitro, and were 38 % longer than somatic embryos cultured upon agar medium in Petri dishes.Plant Research Centre contribution No. 1523  相似文献   

17.
Somatic embryogenesis (SE) was induced in female flower buds from mature Schisandra chinensis cultivar ‘Hongzhenzhu’. Somatic embryo structures were induced at a low frequency from unopened female flower buds and excised unopened on Murashige and Skoog (MS) agar medium containing 4.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Friable embryogenic calli were induced from somatic embryo structures after three to four subcultures on initiation medium. The frequencies of mature somatic embryo germination and plantlet conversion were low, but increased in the presence of gibberellic acid (GA3). Some germinated somatic embryos could form friable embryogenic calli on medium without plant growth regulators (PGRs). The germination and conversion frequencies of somatic embryos from embryogenic calli induced using PGR-free medium were higher than for somatic embryos from embryogenic calli induced on medium containing 2,4-D. Most somatic embryos from 2,4-D-induced embryogenic calli had trumpet-shaped embryos, and most somatic embryos from PGR-free medium–induced embryogenic calli had two or three cotyledons. Histological observation indicated that two- and three-cotyledon embryos had defined shoot primordia, but most of the trumpet-shaped embryos yielded plantlets that lacked or had poorly developed meristem tissue. Cytological and random amplification of polymorphic DNA (RAPD) analyses indicated no evidence of genetic variation in the plantlets of somatic embryo origin.  相似文献   

18.
Cotyledon explants of Korean ginseng (Panax ginseng C. A. Meyer) produced somatic embryos directly on growth regulator-free medium. Somatic embryos developed as either multiple or single-state forms, depending on the degree of maturity of the cotyledons. Cotyledon explants from midmature zygotic embryos formed multiple embryos, while cotyledons from fully mature zygotic embryos formed single embryos. Somatic single embryos regenerated into normal plantlets with both roots and shoots, while multiple embryos did not produce roots but regenerated only into multiple shoots. In full-strength MS basal medium, the root growth of plantlets derived from single embryos was weak compared to that of shoots. Deletion of ammonium nitrate from the MS medium promoted the root growth of the plantlets. The ginseng plants with well-developed shoots and roots regenerated from single embryos were successfully acclimatized in a greenhouse when they were planted in soil. Received: 19 July 1997 / Revision received: 6 October 1997 / Accepted: 3 October 1997  相似文献   

19.
Explants from three different parts (cotyledon, hypocotyl or root) of one week-old seedlings of Eleutherococcus senticosus were cultured on Murashige and Skoog (MS) medium with 1.0 mg l-1 2,4-D. Somatic embryos were formed directly from the surfaces of explants. The frequency of direct somatic embryo formation was the highest in the hypocotyl segments (75%) as compared to cotyledon (56%) or root segments (12%). When hypocotyl explants from 3 different stages of seedlings (zero, one or three week-old) were cultured on MS medium with 1.0 mg l-1 2,4-D, the frequency of somatic embryo formation rapidly declined as the zygotic embryos germinated. However most somatic embryos (93%) from explants of zygotic embryos developed as fused state (multiple embryo), whereas somatic embryos (over 89%) from more developed seedlings developed into single state (single embryo). Single embryos germinated and regenerated into plantlets with both shoots and roots, while multiple embryos only regenerated into only multiple shoots. Plantlets that regenerated from single embryos of E. senticosus were acclimatized in a greenhouse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Summary Embryogenic suspension cultures of the hardwood forest tree yellow-poplar (Liriodendron tulipifera) have the potential to produce millions of plantlets. However, low conversion frequencies limit the realization of this potential. Using 4 embryogenic yellow-poplar lines, we first tested the ability of somatic embryos, selected for their similarity to mature zygotic embryos, to convert to plantlets, then tested physical and chemical treatments for their effects on promoting maturation of somatic embryos and subsequent plantlet production. Embryos selected based on resemblance to mature zygotic embryos and transferred to a hormone-free basal medium without casein hydrolysate (CH) produced plantlets at a frequency of 63%. Populations of synchronized somatic embryos were obtained by repeated fractionation of liquid medium-cultured proembryogenic masses (PEMs) on stainless steel sieves. These fractionated embryos failed to mature properly when cultured in liquid basal medium, however. Development of embryos cultured in basal medium supplemented with 5×10−7 M abscisic acid (ABA) was slowed and embryos appeared to mature properly, with separated cotyledons and little precocious germination. However, ABA-treated embryos only rarely converted to plantlets, possibly due to residual effects of the ABA. PEMs fractionated on sieves, transferred to filter paper and placed on solidified basal medium gave a 60–70% synchronous population of mature embryos 10–12 days following plating. Mature embryos transferred to basal medium without CH converted at a frequency of 72%. The percentage of all embryos differentiating from PEMs on filter paper that formed plantlets was 32%. This material is based upon work supported by the U. S. Department of Agriculture Cooperative State Research Service under Agreement No. 85-FSTY-9-0117.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号